SBOSAM2 August   2025 INA701

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements (I2C)
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Integrated Shunt Resistor
      2. 6.3.2 Safe Operating Area
      3. 6.3.3 Versatile Measurement Capability
      4. 6.3.4 Internal Measurement and Calculation Engine
      5. 6.3.5 High-Precision Delta-Sigma ADC
        1. 6.3.5.1 Low Latency Digital Filter
        2. 6.3.5.2 Flexible Conversion Times and Averaging
      6. 6.3.6 Integrated Precision Oscillator
      7. 6.3.7 Multi-Alert Monitoring and Fault Detection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown Mode
      2. 6.4.2 Power-On Reset
    5. 6.5 Programming
      1. 6.5.1 I2C Serial Interface
        1. 6.5.1.1 Writing to and Reading Through the I2C Serial Interface
        2. 6.5.1.2 High-Speed I2C Mode
        3. 6.5.1.3 SMBus Alert Response
    6. 6.6 Register Maps
      1. 6.6.1 INA701 Registers
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Device Measurement Range and Resolution
      2. 7.1.2 ADC Output Data Rate and Noise Performance
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Configure the Device
        2. 7.2.2.2 Set Desired Fault Thresholds
        3. 7.2.2.3 Calculate Returned Values
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YWF|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Calculate Returned Values

Parametric values are calculated by multiplying the returned value by the LSB value. Table 7-4 shows the returned values for this application example, assuming the design requirements shown in Table 7-3.

Table 7-4 Calculating Returned Values
PARAMETERRETURNED VALUELSB VALUECALCULATED VALUE
Current (A)10526d190µA2A
Bus voltage (V)3840d3.125mV12V
Power (W)631578d38µW24W
Energy (J)142105263d0.608mJ86.4kJ
Charge (C)606315789d11.875µC7200C
Temperature (°C)320d125mºC40°C

Current, Bus Voltage (positive only), Charge, and Temperature return values in 2's-complement format. In 2's-complement format a negative value in binary is represented by having a 1 in the most significant bit of the returned value. These values can be converted to decimal by first inverting all the bits and adding 1 to obtain the unsigned binary value. This value can then be converted to decimal with the negative sign applied. For example, assume a current reading returns 1011 0100 0001 0000. This is a negative value due to the MSB having a value of one. Inverting the bits and adding one results in 0100 1011 1111 0000 (19440d) which is current value of 3.6936A. The returned value is negative, therefore the measured current value is –3.6936A.