SNAS834 November   2024 LMK5C22212A

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Diagrams
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Differential Voltage Measurement Terminology
    2. 6.2 Output Clock Test Configurations
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 PLL Architecture Overview
      2. 7.2.2 DPLL
        1. 7.2.2.1 Independent DPLL Operation
        2. 7.2.2.2 Cascaded DPLL Operation
        3. 7.2.2.3 APLL Cascaded With DPLL
      3. 7.2.3 APLL-Only Mode
    3. 7.3 Feature Description
      1. 7.3.1  Oscillator Input (XO)
      2. 7.3.2  Reference Inputs
      3. 7.3.3  Clock Input Interfacing and Termination
      4. 7.3.4  Reference Input Mux Selection
        1. 7.3.4.1 Automatic Input Selection
        2. 7.3.4.2 Manual Input Selection
      5. 7.3.5  Hitless Switching
        1. 7.3.5.1 Hitless Switching With Phase Cancellation
        2. 7.3.5.2 Hitless Switching With Phase Slew Control
      6. 7.3.6  Gapped Clock Support on Reference Inputs
      7. 7.3.7  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 7.3.7.1 XO Input Monitoring
        2. 7.3.7.2 Reference Input Monitoring
          1. 7.3.7.2.1 Reference Validation Timer
          2. 7.3.7.2.2 Frequency Monitoring
          3. 7.3.7.2.3 Missing Pulse Monitor (Late Detect)
          4. 7.3.7.2.4 Runt Pulse Monitor (Early Detect)
          5. 7.3.7.2.5 Phase Valid Monitor for 1-PPS Inputs
        3. 7.3.7.3 PLL Lock Detectors
        4. 7.3.7.4 Tuning Word History
        5. 7.3.7.5 Status Outputs
        6. 7.3.7.6 Interrupt
      8. 7.3.8  PLL Relationships
        1. 7.3.8.1  PLL Frequency Relationships
          1. 7.3.8.1.1 APLL Phase Frequency Detector (PFD) and Charge Pump
          2. 7.3.8.1.2 APLL VCO Frequency
          3. 7.3.8.1.3 DPLL TDC Frequency
          4. 7.3.8.1.4 DPLL VCO Frequency
          5. 7.3.8.1.5 Clock Output Frequency
        2. 7.3.8.2  Analog PLLs (APLL1, APLL2)
        3. 7.3.8.3  APLL Reference Paths
          1. 7.3.8.3.1 APLL XO Doubler
          2. 7.3.8.3.2 APLL XO Reference (R) Divider
        4. 7.3.8.4  APLL Feedback Divider Paths
          1. 7.3.8.4.1 APLL N Divider With Sigma-Delta Modulator (SDM)
        5. 7.3.8.5  APLL Loop Filters (LF1, LF2)
        6. 7.3.8.6  APLL Voltage-Controlled Oscillators (VCO1, VCO2)
          1. 7.3.8.6.1 VCO Calibration
        7. 7.3.8.7  APLL VCO Clock Distribution Paths
        8. 7.3.8.8  DPLL Reference (R) Divider Paths
        9. 7.3.8.9  DPLL Time-to-Digital Converter (TDC)
        10. 7.3.8.10 DPLL Loop Filter (DLF)
        11. 7.3.8.11 DPLL Feedback (FB) Divider Path
      9. 7.3.9  Output Clock Distribution
      10. 7.3.10 Output Source Muxes
      11. 7.3.11 Output Channel Muxes
      12. 7.3.12 Output Dividers (OD)
      13. 7.3.13 Output Delay
      14. 7.3.14 Clock Outputs
        1. 7.3.14.1 Differential Output
        2. 7.3.14.2 LVCMOS Output
        3. 7.3.14.3 SYSREF/1PPS Output
      15. 7.3.15 Output Auto-Mute During LOL
      16. 7.3.16 Glitchless Output Clock Start-Up
      17. 7.3.17 Clock Output Interfacing and Termination
      18. 7.3.18 Output Synchronization (SYNC)
      19. 7.3.19 Zero-Delay Mode (ZDM)
      20. 7.3.20 DPLL Programmable Phase Delay
      21. 7.3.21 Time Elapsed Counter (TEC)
        1. 7.3.21.1 Configuring TEC Functionality
        2. 7.3.21.2 SPI as a Trigger Source
        3. 7.3.21.3 GPIO Pin as a TEC Trigger Source
          1. 7.3.21.3.1 An Example: Making a Time Elapsed Measurement Using TEC and GPIO1 as Trigger
        4. 7.3.21.4 Other TEC Behavior
    4. 7.4 Device Functional Modes
      1. 7.4.1 DPLL Operating States
        1. 7.4.1.1 Free-Run
        2. 7.4.1.2 Lock Acquisition
        3. 7.4.1.3 DPLL Locked
        4. 7.4.1.4 Holdover
      2. 7.4.2 Digitally-Controlled Oscillator (DCO) Frequency and Phase Adjustment
        1. 7.4.2.1 DPLL DCO Control
        2. 7.4.2.2 DPLL DCO Relative Adjustment Frequency Step Size
        3. 7.4.2.3 APLL DCO Frequency Step Size
      3. 7.4.3 APLL Frequency Control
      4. 7.4.4 Device Start-Up
        1. 7.4.4.1 Device Power-On Reset (POR)
        2. 7.4.4.2 PLL Start-Up Sequence
        3. 7.4.4.3 Start-Up Options for Register Configuration
        4. 7.4.4.4 GPIO1 and SCS_ADD Functionalities
        5. 7.4.4.5 ROM Page Selection
        6. 7.4.4.6 EEPROM Overlay
      5. 7.4.5 Programming
        1. 7.4.5.1 Memory Overview
        2. 7.4.5.2 Interface and Control
          1. 7.4.5.2.1 Programming Through TICS Pro
          2. 7.4.5.2.2 SPI Serial Interface
          3. 7.4.5.2.3 I2C Serial Interface
        3. 7.4.5.3 General Register Programming Sequence
        4. 7.4.5.4 Steps to Program the EEPROM
          1. 7.4.5.4.1 Overview of the SRAM Programming Methods
          2. 7.4.5.4.2 EEPROM Programming With the Register Commit Method
          3. 7.4.5.4.3 EEPROM Programming With the Direct Writes Method or Mixed Method
          4. 7.4.5.4.4 Five MSBs of the I2C Address and the EEPROM Revision Number
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Start-Up Sequence
      2. 8.1.2 Power Down (PD#) Pin
      3. 8.1.3 Strap Pins for Start-Up
      4. 8.1.4 Pin States
      5. 8.1.5 ROM and EEPROM
      6. 8.1.6 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 8.1.6.1 Power-On Reset (POR) Circuit
        2. 8.1.6.2 Power Up From a Single-Supply Rail
        3. 8.1.6.3 Power Up From Split-Supply Rails
        4. 8.1.6.4 Non-Monotonic or Slow Power-Up Supply Ramp
      7. 8.1.7 Slow or Delayed XO Start-Up
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Supply Bypassing
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
      3. 8.5.3 Thermal Reliability
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Glossary
    6. 9.6 Electrostatic Discharge Caution
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

PLL Architecture Overview

Figure 7-2 shows the PLL architecture implemented in the LMK5C22212A. The primary channel consists of a digital PLL (DPLL1) and analog PLL (APLL1) with integrated BAW VBCO (VCO1). APLL2 with integrated LC VCO (VCO2) can generate secondary frequency domain. The numerator in the APLL2 feedback N divider can be controlled by DPLL2 if a second synchronization domain is needed.

The DPLL is comprised of a time-to-digital converter (TDC), digital loop filter (DLF), and programmable 40-bit fractional feedback (FB) divider with sigma-delta-modulator (SDM). The APLLs are comprised of a reference (R) divider, phase-frequency detector (PFD), loop filter (LF), fractional feedback (N) divider with SDM, and VCO.

The DPLL has a reference selection mux that allows the DPLL to be either locked to another VCO domain (DPLL Cascaded) of the APLL or locked to the reference input (Non-Cascaded) providing unique flexibility in frequency and phase control across multiple clock domains.

Each APLL has a reference selection mux that allows the APLL to be either locked to another VCO domain (APLL Cascaded) of the APLL or locked to the XO input (Non-Cascaded).

Do not cascade one VCO output to both the DPLL reference and APLL reference of the same DPLL/APLL pair.

Each APLL has a fixed 40 bit denominator controllable by the DPLL. When operating an APLL without the DPLL, a programmable 24 bit denominator is also available allowing an APLL to cascade between frequency domains with 0ppm frequency error.

Any unused DPLL or APLL must be disabled (powered-down) to save power. Each VCO of the APLL drives the clock distribution blocks using the respective VCO post-dividers. If the post-divider setting is 1 for VCO1, the post-divider is bypassed and VCO1 feeds the output clock distribution blocks directly.

LMK5C22212A PLL Architecture Figure 7-2 PLL Architecture

The following sections describe the basic principles of DPLL and APLL operation. See DPLL Operating States for more details on the PLL modes of operation including holdover.