SBOS263H October   2002  – December 2024 OPA830

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configurations
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics for D Package VS = ±5V
    6. 6.6  Electrical Characteristics for D Package VS = 5V
    7. 6.7  Electrical Characteristics for D Package VS = 3V
    8. 6.8  Electrical Characteristics for DBV Package VS = ±5V
    9. 6.9  Electrical Characteristics for DBV Package VS = 5V
    10. 6.10 Electrical Characteristics for DBV Package VS = 3V
    11. 6.11 Typical Characteristics: VS = ±5V
    12. 6.12 Typical Characteristics: VS = ±5V, Differential Configuration
    13. 6.13 Typical Characteristics: VS = 5V
    14. 6.14 Typical Characteristics: VS = 5V, Differential Configuration
    15. 6.15 Typical Characteristics: VS = 3V
    16. 6.16 Typical Characteristics: VS = 3V, Differential Configuration
  8. Parameter Measurement Information
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Wideband Voltage-Feedback Operation
      2. 8.1.2  DC Level-Shifting
      3. 8.1.3  Optimizing Resistor Values
      4. 8.1.4  Bandwidth Versus Gain: Noninverting Operation
      5. 8.1.5  Inverting Amplifier Operation
      6. 8.1.6  Output Current and Voltages
      7. 8.1.7  Driving Capacitive Loads
      8. 8.1.8  Distortion Performance
      9. 8.1.9  Noise Performance
      10. 8.1.10 DC Accuracy and Offset Control
      11. 8.1.11 Thermal Analysis
    2. 8.2 Typical Applications
      1. 8.2.1 Single-Supply ADC Interface
      2. 8.2.2 AC-Coupled Output Video Line Driver
      3. 8.2.3 Noninverting Amplifier With Reduced Peaking
      4. 8.2.4 Single-Supply Active Filter
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
        1. 8.3.1.1 Input and ESD Protection
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Demonstration Boards
        2. 9.1.1.2 Macromodel and Applications Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DBV|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Single-Supply Active Filter

The OPA830, while operating on a single 3V or 5V supply, works well with high-frequency active filter designs. Again, the key additional requirement is to establish the dc operating point of the signal near the supply midpoint for highest dynamic range. Figure 8-10 shows an example design of a 1MHz low-pass Butterworth filter using the Sallen-Key topology.

OPA830 Single-Supply, High-Frequency
                    Active Filter Figure 8-10 Single-Supply, High-Frequency Active Filter

Both the input signal and the gain setting resistor are ac-coupled using 0.1μF blocking capacitors (actually giving bandpass response with the low-frequency pole set to 32kHz for the component values shown). As discussed for Figure 8-1, this configuration allows the midpoint bias formed by the two 1.87kΩ resistors to appear at both the input and output pins. The midband signal gain is set to +4 (12dB) in this case. The capacitor to ground on the noninverting input is intentionally set larger to dominate input parasitic terms. At a gain of +4, the OPA830 on a single supply shows 30MHz small- and large-signal bandwidth. The resistor values are slightly adjusted to account for this limited bandwidth in the amplifier stage. Tests of this circuit show a precise 1MHz, –3dB point with a maximally flat pass band (greater than the 32kHz ac-coupling corner), and a maximum stop-band attenuation of 36dB at the amplifier –3dB bandwidth of 30MHz.