SBOS263H October   2002  – December 2024 OPA830

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configurations
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics for D Package VS = ±5V
    6. 6.6  Electrical Characteristics for D Package VS = 5V
    7. 6.7  Electrical Characteristics for D Package VS = 3V
    8. 6.8  Electrical Characteristics for DBV Package VS = ±5V
    9. 6.9  Electrical Characteristics for DBV Package VS = 5V
    10. 6.10 Electrical Characteristics for DBV Package VS = 3V
    11. 6.11 Typical Characteristics: VS = ±5V
    12. 6.12 Typical Characteristics: VS = ±5V, Differential Configuration
    13. 6.13 Typical Characteristics: VS = 5V
    14. 6.14 Typical Characteristics: VS = 5V, Differential Configuration
    15. 6.15 Typical Characteristics: VS = 3V
    16. 6.16 Typical Characteristics: VS = 3V, Differential Configuration
  8. Parameter Measurement Information
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Wideband Voltage-Feedback Operation
      2. 8.1.2  DC Level-Shifting
      3. 8.1.3  Optimizing Resistor Values
      4. 8.1.4  Bandwidth Versus Gain: Noninverting Operation
      5. 8.1.5  Inverting Amplifier Operation
      6. 8.1.6  Output Current and Voltages
      7. 8.1.7  Driving Capacitive Loads
      8. 8.1.8  Distortion Performance
      9. 8.1.9  Noise Performance
      10. 8.1.10 DC Accuracy and Offset Control
      11. 8.1.11 Thermal Analysis
    2. 8.2 Typical Applications
      1. 8.2.1 Single-Supply ADC Interface
      2. 8.2.2 AC-Coupled Output Video Line Driver
      3. 8.2.3 Noninverting Amplifier With Reduced Peaking
      4. 8.2.4 Single-Supply Active Filter
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
        1. 8.3.1.1 Input and ESD Protection
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Demonstration Boards
        2. 9.1.1.2 Macromodel and Applications Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DBV|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bandwidth Versus Gain: Noninverting Operation

Voltage-feedback op amps exhibit decreasing closed-loop bandwidth as the signal gain is increased. In theory, this relationship is described by the gain bandwidth product (GBP) shown in the specifications. Ideally, dividing GBP by the noninverting signal gain (also called the noise gain, or NG) predicts the closed-loop bandwidth. In practice, this prediction only holds true when the phase margin approaches 90°, as in high-gain configurations. At low gains (increased feedback factors), most amplifiers exhibit a more complex response with lower phase margin. The OPA830 is compensated to give a slightly peaked response in a noninverting gain of 2 (see Figure 8-3). This compensation results in a typical gain of +2 bandwidth of 110MHz, far exceeding the result predicted by dividing the 110MHz GBP by 2. Increasing the gain causes the phase margin to approach 90° and the bandwidth to more closely approach the predicted value of (GBP/NG). At a gain of +10, the 11MHz bandwidth shown in the Electrical Characteristics agrees with the result predicted using the simple formula and the typical GBP of 110MHz.

Frequency response in a gain of +2 can be modified to achieve exceptional flatness simply by increasing the noise gain to 3. One method, without affecting the +2 signal gain, is to add a 2.55kΩ resistor across the two inputs (see also Figure 8-9). A similar technique can be used to reduce peaking in unity-gain (voltage follower) applications. For example, by using a 750Ω feedback resistor along with a 750Ω resistor across the two op amp inputs, the voltage follower response is similar to the gain of +2 response of Figure 8-2. Further reducing the value of the resistor across the op amp inputs further dampens the frequency response due to increased noise gain. The OPA830 exhibits minimal bandwidth reduction going to single-supply (5V) operation as compared with ±5V. This minimal reduction is because the internal bias control circuitry retains nearly constant quiescent current as the total supply voltage between the supply pins changes.