JAJU732C June   2019  – July 2022

 

  1.   概要
  2.   Resources
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1  UCC21530
      2. 2.2.2  AMC1311
      3. 2.2.3  AMC3302
      4. 2.2.4  AMC3306M05
      5. 2.2.5  LM76003
      6. 2.2.6  LMZ31707
      7. 2.2.7  OPA320
      8. 2.2.8  ISO7721
      9. 2.2.9  SN6501
      10. 2.2.10 SN6505B
      11. 2.2.11 TMP235
      12. 2.2.12 LMT87
      13. 2.2.13 TL431
      14. 2.2.14 LMV762
      15. 2.2.15 TMS320F280049 C2000 MCU
      16. 2.2.16 TMDSCNCD280049C
    3. 2.3 System Design Theory
      1. 2.3.1 Dual Active Bridge Analogy With Power Systems
      2. 2.3.2 Dual-Active Bridge - Switching Sequence
      3. 2.3.3 Dual-Active Bridge - Zero Voltage Switching (ZVS)
      4. 2.3.4 Dual-Active Bridge - Design Considerations
        1. 2.3.4.1 Leakage Inductor
        2. 2.3.4.2 Effect of Inductance on Current
        3. 2.3.4.3 Phase Shift
        4. 2.3.4.4 Capacitor Selection
        5. 2.3.4.5 Soft Switching Range
        6. 2.3.4.6 Switching Frequency
        7. 2.3.4.7 Transformer Selection
        8. 2.3.4.8 SiC MOSFET Selection
      5. 2.3.5 Loss Analysis
        1. 2.3.5.1 Design Equations
        2. 2.3.5.2 SiC MOSFET and Diode Losses
        3. 2.3.5.3 Transformer Losses
        4. 2.3.5.4 Inductor Losses
        5. 2.3.5.5 Gate Driver Losses
        6. 2.3.5.6 Efficiency
        7. 2.3.5.7 Thermal Considerations
  8. 3Circuit Description
    1. 3.1 Power Stage
    2. 3.2 DC Voltage Sensing
      1. 3.2.1 Primary DC Voltage Sensing
      2. 3.2.2 Secondary DC Voltage Sensing
    3. 3.3 Current Sensing
    4. 3.4 Power Architecture
      1. 3.4.1 Auxiliary Power Supply
      2. 3.4.2 Isolated Power Supply for Sense Circuits
    5. 3.5 Gate Driver
      1. 3.5.1 Gate Driver Circuit
      2. 3.5.2 Gate Driver Bias Power Supply
      3. 3.5.3 Gate Driver Discrete Circuits - Short-Circuit Detection and Two Level Turn Off
  9. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Software
        1. 4.1.2.1 Getting Started With Software
        2. 4.1.2.2 Pin Configuration
        3. 4.1.2.3 PWM Configuration
        4. 4.1.2.4 High-Resolution Phase Shift Configuration
        5. 4.1.2.5 ADC Configuration
        6. 4.1.2.6 ISR Structure
    2. 4.2 Test Setup
    3. 4.3 PowerSUITE GUI
    4. 4.4 LABs
      1. 4.4.1 Lab 1
      2. 4.4.2 Lab 2
      3. 4.4.3 Lab 3
      4. 4.4.4 Lab 4
      5. 4.4.5 Lab 5
    5. 4.5 Test Results
      1. 4.5.1 Open-Loop Performance
      2. 4.5.2 Closed-Loop Performance
  10. 5Design Files
    1. 5.1 Schematics
    2. 5.2 Bill of Materials
    3. 5.3 PCB Layout Recommendations
      1. 5.3.1 Layout Prints
    4. 5.4 Altium Project
    5. 5.5 Gerber Files
    6. 5.6 Assembly Drawings
  11. 6Related Documentation
    1. 6.1 Trademarks
  12. 7Terminology
  13. 8About the Author
  14. 9Revision History

Lab 5

  • Figure 4-40 shows test setup for lab 5 (Open Loop voltage - Reverse power flow).

    In this setup, the DC source is connected to secondary side and the resistive load is connected to primary side.


    GUID-20210831-SS0I-D0LV-FFTD-5LNBXFPNB85J-low.gif

    Figure 4-40 Lab 5 Test Setup
  • Compile the project by selecting Lab 5: Open Loop PWM, Sec to Prim Power Flow in the drop-down menu of Project Options from PowerSUITE GUI. Ensure current and voltage limits are set per operating conditions.
    #if DAB_LAB == 5
    #define DAB_CONTROL_RUNNING_ON C28X_CORE
    #define DAB_POWER_FLOW DAB_POWER_FLOW_SEC_PRI
    #define DAB_INCR_BUILD DAB_OPEN_LOOP_BUILD
    #define DAB_TEST_SETUP DAB_TEST_SETUP_RES_LOAD
    #define DAB_PROTECTION DAB_PROTECTION_ENABLED
    #define DAB_CONTROL_MODE DAB_VOLTAGE_MODE
    #define DAB_SFRA_TYPE 0#define DAB_SFRA_AMPLITUDE (float32_t)DAB_SFRA_INJECTION_AMPLITUDE_LEVEL2
    #endif
    1. Run the project by clicking green run button in CCS
    2. Populate the required variables in the watch window by loading javascript ' setupdebugenv_lab5.js' in the scripting console
      GUID-20210818-SS0I-MMBG-3QV9-0V59LXDD3BTL-low.png Figure 4-41 Lab 5 Watch View
    3. Enable PWM by writing “1” to the DAB_clearTrip variable
    4. Vary phase shift slowly in steps of 0.002 pu by writing to DAB_pwmPhaseShiftPrimSec_pu and observe the change in voltage at the output of converter.
      Note: The negative sign in the phase shift value is required for the reverse power flow.
      GUID-20210818-SS0I-CRW5-R1RW-VLMSPBG1P80B-low.png
      Test Conditions: VOUT = 600 VDC, Phase shift = –0.032, VIN = 330 VDC, Load = 400 Ω
      Figure 4-42 Lab 5 Reverse Power Flow
  • Overcurrent Protections (Reverse Power Flow)

    Figure 4-43 and Figure 4-44illustrate the overcurrent protections (reverse power flow).

    GUID-20210818-SS0I-VS9J-LKVF-H8QKRDGPRPTV-low.pngFigure 4-43 Lab 5 Reverse Power Flow Trip on Secondary (Source), Limit Set = 4 A
    GUID-20210818-SS0I-F2VP-DZZM-QH13TCGJRGFR-low.pngFigure 4-44 Lab 5 Reverse Power Flow Trip on Primary (Resistive Load), Limit Set = 2.5 A