SPRADA9C August   2024  – October 2025 AM62P , AM62P-Q1

 

  1.   1
  2.   ABSTRACT
  3.   Trademarks
  4. Introduction
    1. 1.1 Before Getting Started With the Custom Board Design
    2. 1.2 Processor-Specific SDK
    3. 1.3 Peripheral Circuit Implementation - Compatibility Between Processor Families
    4. 1.4 Selection of Required Processor OPN (Orderable Part Number)
      1. 1.4.1 Processor Support for Secure Boot and Functional Safety
    5. 1.5 Technical Documentation
      1. 1.5.1 Updated SK Schematic With Design, Review and Cad Notes Added
      2. 1.5.2 Collaterals on TI.com, Processor Product Page
      3. 1.5.3 Schematic Design Guidelines and Schematic Review Checklist - Processor Family Specific User's Guide
      4. 1.5.4 Updates to Hardware Design Considerations User's Guide
      5. 1.5.5 Processor and Peripherals Related FAQs to Support Custom Board Designs
    6. 1.6 Custom Board Design Documentation
    7. 1.7 Processor and Processor Peripherals Design Related Queries During Custom Board Design
  5. Custom Board Design Block Diagram
    1. 2.1 Developing the Custom Board Design Block Diagram
    2. 2.2 Configuring the Boot Mode
    3. 2.3 Configuring the Processor Pins Functionality (PinMux Configuration)
  6. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power Architecture
      2. 3.1.2 Discrete Power Architecture
    2. 3.2 Processor Supply (Power) Rails (Operating Voltage)
      1. 3.2.1 Supported Low-Power Modes
        1. 3.2.1.1 Partial IO Support for CAN/GPIO/UART Wakeup
      2. 3.2.2 Core Power Supply
      3. 3.2.3 Peripherals Power Supply
      4. 3.2.4 Dual-Voltage IO Supply for IO Group (Processor) Power Supply
      5. 3.2.5 Dynamic Voltage Switching Dual-Voltage Power Supply
      6. 3.2.6 VPP (eFuse ROM Programming) Power Supply
      7. 3.2.7 Internal LDOs for IO Supply for IO Groups (Processor)
    3. 3.3 Power Supply Filtering
    4. 3.4 Power Supply Decoupling and Bulk Capacitors
      1. 3.4.1 Note on PDN Target Impedance
    5. 3.5 Power Supply Sequencing
    6. 3.6 Power Supply Diagnostics (Using Processor Supported External Input Voltage Monitors)
    7. 3.7 Power Supply Diagnostics (Monitoring Using External Monitoring Circuit (Devices))
    8. 3.8 Custom Board Current Requirements Estimation and Supply Sizing
  7. Processor Clock (Input and Output)
    1. 4.1 Processor Clocking (External Crystal or External Oscillator)
      1. 4.1.1 WKUP_LFOSC0 Connection When Unused
      2. 4.1.2 MCU_OSC0 and WKUP_LFOSC0, Crystal Selection
      3. 4.1.3 LVCMOS Compatible Digital Clock Input Source
    2. 4.2 Processor Clock Outputs
      1. 4.2.1 Observation Clock Outputs
    3. 4.3 Clock Tree Tool
  8. JTAG (Joint Test Action Group)
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
        1. 5.1.1.1 BSDL File
      2. 5.1.2 Implementation of JTAG / Emulation
      3. 5.1.3 Connection Recommendations for JTAG Interface Signals
      4. 5.1.4 Debug Boot Modes and Boundary Scan Compliance
  9. Configuration (Processor) and Initialization (Processor and Device)
    1. 6.1 Processor Reset
    2. 6.2 Latching of Processor Boot Mode Configuration Inputs
    3. 6.3 Resetting of the Attached Device
    4. 6.4 Watchdog Timer
  10. Processor - Peripherals Connection
    1. 7.1  Supported Processor Cores and MCU Cores
    2. 7.2  Selecting Peripherals Across Domains
    3. 7.3  Memory Controller (DDRSS)
      1. 7.3.1 Processor DDR Subsystem and Device Register Configuration
      2. 7.3.2 Calibration Resistor Connection for DDRSS
      3. 7.3.3 Attached Memory Device ZQ and Reset_N (Memory Device Reset) Connection
    4. 7.4  Media and Data Storage Interfaces (MMC0, MMC1, MMC2, OSPI0/QSPI0 and GPMC0)
    5. 7.5  Ethernet Interface
      1. 7.5.1 Common Platform Ethernet Switch 3-port Gigabit (CPSW3G0)
    6. 7.6  Programmable Real-Time Unit Subsystem (PRUSS)
    7. 7.7  Universal Serial Bus (USB) Subsystem
    8. 7.8  General Connectivity Peripherals
      1. 7.8.1 Inter-Integrated Circuit (I2C) Interface
    9. 7.9  Display Subsystem (DSS)
    10. 7.10 CSI-Rx (Camera Serial interface)
    11. 7.11 Real-Time Clock (RTC) Module
    12. 7.12 Connection of Processor Power Supply Pins, IOs and Peripherals When not Used
      1. 7.12.1 External Interrupt (EXTINTn)
      2. 7.12.2 RSVD Reserved Pins (Signals)
    13. 7.13 SK Specific Circuit Implementation (Reuse)
  11. Interfacing of Processor IOs (LVCMOS or SDIO or Open-Drain, Fail-Safe Type IO Buffers) and Performing Simulations
    1. 8.1 IBIS Model
    2. 8.2 IBIS-AMI Model
  12. Processor Current Draw and Thermal Analysis
    1. 9.1 Power Estimation
    2. 9.2 Maximum Current Rating for Different Supply Rails
    3. 9.3 Supported Power Modes
    4. 9.4 Thermal Design Guidelines
      1. 9.4.1 Thermal Model
      2. 9.4.2 Voltage Thermal Management Module (VTM)
  13. 10Schematic:- Capture, Entry and Review
    1. 10.1 Custom Board Design Passive Components and Values Selection
    2. 10.2 Custom Board Design Electronic Computer Aided Design (ECAD) Tools Considerations
    3. 10.3 Custom Board Design Schematic Capture
    4. 10.4 Custom Board Design Schematic Review
  14. 11Floor Planning, Layout, Routing Guidelines, Board Layers and Simulation
    1. 11.1 Escape Routing for PCB Design
    2. 11.2 LPDDR4 Design and Layout Guidelines
    3. 11.3 High-Speed Differential Signal Routing Guidelines
    4. 11.4 Processor-Specific SK Board Layout
    5. 11.5 Custom Board Layer Count and Layer Stack-up
      1. 11.5.1 Simulation Recommendations
    6. 11.6 DDR-MARGIN-FW
    7. 11.7 Reference for Steps to be Followed for Running Board Simulation
    8. 11.8 Software Development Training (Academy) for Processors
  15. 12Custom Board Assembly and Testing
    1. 12.1 Custom Board Bring-up Tips and Debug Guidelines
  16. 13Processor (Device) Handling and Assembly
    1. 13.1 Processor (Device) Soldering Recommendations
      1. 13.1.1 Additional References
  17. 14Terminology
  18. 15References
    1. 15.1 Processor-Specific (AM62P, AM62P-Q1)
    2. 15.2 Common
  19. 16Revision History

Dual-Voltage IO Supply for IO Group (Processor) Power Supply

The processor family supports x8 (eight) dual-voltage IO supply for IO group (VDDSHVx [x = 0-3, 5, 6], VDDSHV_MCU and VDDSHV_CANUART). Each group is connected (referenced) to a fixed set of IOs. Each IO supply for IO group can be connected to fixed (VDDSHV5, VDDSHV6 supports dynamic supply switching) 3.3V or 1.8V supply independently. The IO supply for IO group defines a common operating voltage for the entire set (fixed set) of IOs.

Most of the processor IOs are not fail-safe. For information on available fail-safe IOs, see the device-specific data sheet. The recommendation is to connect the IO supply of attached devices to the same power source connected to the respective processor dual-voltage IO supply for IO group (VDDSHVx) to make sure the custom board design never applies potential to any of the processor IO that is not powered. Applying input to the IOs that are not fail-safe when IO supply is not available can affect the processor functionality, performance and reliability.

For more information, see the following FAQ:

[FAQ] AM625 / AM623 / AM620-Q1 / AM625-Q1 / AM625SIP : Custom board hardware design – Power sequencing between SOC (Processor) and the Attached devices (Fail-safe)

The FAQ is generic and can also be used for AM62P, AM62P-Q1 processor family.

Supported IO supply for IO groups are listed below:

  • VDDSHV0 – Dual-voltage IO supply for Main reset and General interface IO group (Fixed)
  • VDDSHV1 – Dual-voltage IO supply for OSPI0 IO group (Fixed)
  • VDDSHV2 – Dual-voltage IO supply for RGMII1, RGMII2 IO group (Fixed)
  • VDDSHV3 – Dual-voltage IO supply for GPMC0 IO group (Fixed)
  • VDDSHV5 – Dual-voltage IO supply for MMC1 IO group (Fixed or Dynamic supply switching)
  • VDDSHV6 – Dual-voltage IO supply for MMC2 IO group (Fixed or Dynamic supply switching)
  • VDDSHV_MCU – Dual-voltage IO supply for WKUP_MCU IO group (Fixed)
  • VDDSHV_CANUART – Dual-voltage IO supply for CANUART IO group (Fixed)
Note:

Dynamically switched supply 1.8V or 3.3V can be applied to IO supply for IO groups shown above as dynamic. A fixed 1.8V or 3.3V can be applied to IO supply for IO groups shown above as fixed. There is no IO supply voltage level dependency between 2 IO supply for IO groups.

Note: VDDSHV4 supply, IO supply group for IO supply is not supported (available) in the AM62P, AM62P-Q1 processor family.
Note:

VDDSHV_CANUART is recommended to be connected to an always-on power source when partial IO (low-power) mode is implemented. The recommendation is to connect VDDSHV_CANUART to any valid IO power source (1.8V or 3.3V) when partial IO (low-power) mode is not used.