STDA017 November   2025 TPS7A33 , TPS7A4501-SP , TPS7A47 , TPS7A47-Q1 , TPS7A4701-EP , TPS7A52 , TPS7A52-Q1 , TPS7A53 , TPS7A53-Q1 , TPS7A53A-Q1 , TPS7A53B , TPS7A54 , TPS7A54-Q1 , TPS7A57 , TPS7A8300 , TPS7A83A , TPS7A84 , TPS7A84A , TPS7A85A , TPS7A90 , TPS7A91 , TPS7A92 , TPS7A94 , TPS7A96 , TPS7B7702-Q1 , TPS7H1111-SEP , TPS7H1111-SP

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction to Parallel LDOs Using Ballast Resistors
  5. 2Noise Analysis of Parallel LDOs Using Ballast Resistors
  6. 3LDO Output Impedance
  7. 4Strategies on Reducing the Noise of the Parallel LDO System
  8. 5Noise of Parallel LDOs Using Ballast Resistors
    1. 5.1 TPS7A57
    2. 5.2 TPS7A94
  9. 6Noise Measurements of Alternative Parallel LDO Architectures
    1. 6.1 TPS7B7702-Q1
  10. 7Conclusion
  11. 8References

LDO Output Impedance

Using the TPS7A57 as an example [2], the output impedance ZOUT decreases with increasing load current (Figure 3-1). At very low frequencies, ZOUT is dominated by the drain-source resistance (RDS) of the internal pass MOSFET, the PCB trace impedance, and the internal bond wire impedance. In the mid‑band region, the performance of the internal error amplifier becomes the dominant factor. At frequencies above the mid‑band, the series impedance of the output capacitor, together with the PCB parasitics, dictates ZOUT. To satisfy the condition that R falls out of equation 2, the output impedances of all parallel‑connected LDOs must be identical.

TPS7A94 TPS7A96 TPS7A57 TPS7B7702-Q1 TPS7A57 ZOUT
                    Variation with Load Current Figure 3-1 TPS7A57 ZOUT Variation with Load Current