DLPS292 July   2025 DLPC8424 , DLPC8444 , DLPC8454

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Compatability Table
  6. Pin Configuration and Functions
    1.     7
    2. 5.1  Initialization, Board Level Test, and Debug
    3. 5.2  V-by-One Interface Input Data and Control
    4. 5.3  FPD-Link Port(s) Input Data and Control
    5. 5.4  DSI Input Data and Clock (Not Supported in DLPC8424, DLPC8444, and DLPC8454)
    6. 5.5  DMD SubLVDS Interface
    7. 5.6  DMD Reset and Low-Speed Interfaces
    8. 5.7  Flash Interface
    9. 5.8  Peripheral Interfaces
    10. 5.9  GPIO Peripheral Interface
    11. 5.10 Clock and PLL Support
    12. 5.11 Power and Ground
    13. 5.12 I/O Type Subscript Definition
    14. 5.13 Internal Pullup and Pulldown Characteristics
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2.     23
    3. 6.2  ESD Ratings
    4. 6.3  Recommended Operating Conditions
    5. 6.4  Thermal Information
    6. 6.5  Power Electrical Characteristics
    7. 6.6  Pin Electrical Characteristics
    8. 6.7  DMD SubLVDS Interface Electrical Characteristics
    9.     30
    10. 6.8  DMD Low-Speed Interface Electrical Characteristics
    11.     32
    12. 6.9  V-by-One Interface Electrical Characteristics
    13. 6.10 FPD Link LVDS Electrical Characteristics
    14. 6.11 USB Electrical Characteristics
    15.     36
    16. 6.12 System Oscillator Timing Requirements
    17.     38
    18. 6.13 Power Supply and Reset Timing Requirements
    19.     40
    20. 6.14 V-by-One Interface General Timing Requirements
    21.     42
    22. 6.15 FPD Link Interface General Timing Requirements
    23. 6.16 Flash Interface Timing Requirements
    24.     45
    25. 6.17 Source Frame Timing Requirements
    26.     47
    27. 6.18 Synchronous Serial Port Interface Timing Requirements
    28.     49
    29. 6.19 I2C Interface Timing Requirements
    30. 6.20 Programmable Output Clock Timing Requirements
    31. 6.21 JTAG Boundary Scan Interface Timing Requirements (Debug Only)
    32.     53
    33. 6.22 DMD Low-Speed Interface Timing Requirements
    34.     55
    35. 6.23 DMD SubLVDS Interface Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Input Sources
      2. 7.3.2 V-by-One Interface
      3. 7.3.3 FPD-Link Interface
      4. 7.3.4 DMD (SubLVDS) Interface
      5. 7.3.5 Serial Flash Interface
      6. 7.3.6 GPIO Supported Functionality
        1.       67
        2.       68
      7. 7.3.7 Debug Support
  9. Power Supply Recommendations
    1. 8.1 System Power-Up and Power-Down Sequence
    2. 8.2 DMD Fast Park Control (PARKZ)
    3. 8.3 Power Supply Management
    4. 8.4 Hotplug Usage
    5. 8.5 Power Supplies for Unused Input Source Interfaces
    6. 8.6 Power Supplies
      1. 8.6.1 Power Supplies DLPA3085 or DLPA3082
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Layout Guideline for DLPC8424 or DLPC8444 or DLPC8454 Reference Clock
        1. 9.1.1.1 Recommended Crystal Oscillator Configuration
      2. 9.1.2 V-by-One Interface Layout Considerations
      3. 9.1.3 DMD Maximum Pin-to-Pin, PCB Interconnects Etch Lengths
      4. 9.1.4 Power Supply Layout Guidelines
    2. 9.2 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Device Nomenclature
      1. 10.5.1 Device Markings
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
      1. 10.8.1 Video Timing Parameter Definitions
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

DMD Fast Park Control (PARKZ)

PARKZ is an input early warning signal that must alert the controller at least 32µs before DC supply voltages drop below specifications. Typically, the PARKZ signal is provided by the DLPA3085 or DLPA3082 interrupt output signal. PARKZ must be deasserted (set high) prior to releasing RESETZ (that is, prior to the low-to-high transition on the RESETZ input) for normal operation. When PARKZ is asserted (set low), the controller performs a Fast Park operation on the DMD, which assists in maintaining the lifetime of the DMD. The reference clock must continue running, and RESETZ must remain deactivated for at least 32µs after PARKZ has been asserted (set low) to allow the park operation to complete.

Fast Park operation is only intended for use when loss of power is imminent and beyond the control of the host processor (for example, when the external power source has been disconnected or the battery has dropped below a minimum level). The longest lifetime of the DMD may not be achieved with Fast Park operation. The longest lifetime is achieved with a Normal Park operation. Hence, PARKZ is typically only used instead of a Normal Park request if there is not enough time for a Normal Park. A Normal Park operation takes much longer than 32µs to park the mirrors. During a Normal Park operation, the DLPA3085 or DLPA3082 keeps on all power supplies, and keeps RESETZ high, until the longer mirror parking has completed. Additionally, the DLPA3085 or DLPA3082 may hold the supplies on for a period of time after the parking has been completed. View the relevant DLPA3085 or DLPA3082 data sheet for more information. The longer mirror parking time ensures the longest DMD lifetime and reliability.