SLAAED9 November   2023 TAA5412-Q1 , TAC5311-Q1 , TAC5312-Q1 , TAC5411-Q1 , TAC5412-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
  5. Diagnostic Monitoring Architecture
  6. Monitored Faults
    1. 3.1 Microphone Faults
      1. 3.1.1 Inputs Shorted to Ground
      2. 3.1.2 Inputs Shorted to MICBIAS
      3. 3.1.3 Input Open Circuit
      4. 3.1.4 Input Pins Shorted Together
      5. 3.1.5 Input Overvoltage Detection
      6. 3.1.6 Inputs Shorted to VBAT
    2. 3.2 Line Out Faults
      1. 3.2.1 Output Overcurrent
      2. 3.2.2 Virtual Ground
    3. 3.3 Other Faults
      1. 3.3.1 MICBIAS Overvoltage
        1. 3.3.1.1 DIAG_CFG11 Register (page = 0x01, address = 0x51) [Reset = 0x40]
      2. 3.3.2 MICBIAS Overcurrent
      3. 3.3.3 MICBIAS Load Current
        1. 3.3.3.1 DIAG_CFG6 Register (page = 0x01, address = 0x4C) [Reset = 0xA2]
        2. 3.3.3.2 DIAG_CFG7 Register
      4. 3.3.4 Overtemperature Fault
      5. 3.3.5 Supply Back Pumping
  7. Enabling Diagnostics and Programming Thresholds
    1. 4.1 DIAG_CFG0 Register (page = 0x01, Address = 0x46) [Reset = 0x00]
    2. 4.2 DIAG_CFG1 Register (page = 0x01, Address = 0x47) [Reset = 0x37]
    3. 4.3 DIAG_CFG2 Register (page = 0x01, Address = 0x48) [Reset = 0x87]
  8. Fault Diagnostic Setup Procedure
  9. Fault Reporting
    1. 6.1 Live Registers
      1. 6.1.1 CHx_LIVE Register (page = 0x01, address = 0x3D) [Reset = 0b]
      2. 6.1.2 CH1_LIVE Register (page = 0x01, address = 0x3E) [Reset = 0h]
      3. 6.1.3 INT_LIVE0 Register (page = 0x01, address = 0x3C) [Reset = 00]
      4. 6.1.4 INT_LIVE1 Register (page = 0x00, address = 0x42) [reset = 0x00]
      5. 6.1.5 INT_LIVE2 Register (page = 0x00, address = 0x43) [reset = 0x00]
    2. 6.2 Latched Registers
      1. 6.2.1 Clearing Latched Registers
    3. 6.3 Fault Filtering and Response Time
      1. 6.3.1 Debounce
      2. 6.3.2 Scan Rate
        1. 6.3.2.1 DIAG_CFG4 Register (page = 0x01, address = 0x4A) [reset = 0xB8]
      3. 6.3.3 Moving Average
        1. 6.3.3.1 DIAG_CFG5 Register (page = 0x01, address = 0x4B) [reset = 0h]
  10. Responding to a Fault
    1. 7.1 INT_CFG Register (page = 0x00, address = 0x42) [reset = 0b]
      1. 7.1.1 DIAG_CFG10 Register (page = 0x01, address = 0x50) [Reset = 0x88]
    2. 7.2 Manual Recovery Sequence
    3. 7.3 Recommended Fault Register Read Sequence
  11. Using PurePath Console
    1. 8.1 Advanced Tab
    2. 8.2 Diagnostics Walk-through
      1. 8.2.1 Diagnostics Configuration
      2. 8.2.2 Debounce Configuration
      3. 8.2.3 Latched Fault Status
  12. Diagnostic Monitoring Registers
    1. 9.1 Voltage Measurements
    2. 9.2 MICBIAS Load Current
    3. 9.3 Internal Die Temperature
  13. 10Summary
  14. 11References

INT_CFG Register (page = 0x00, address = 0x42) [reset = 0b]

This register is the interrupt configuration register.

Table 7-1 INT_CFG Register Field Descriptions
Bit Field Type(1) Reset Description
7 INT_POL R/W 0b Interrupt polarity
0b = Active low (IRQZ)
1b = Active high (IRQ)
6-5 INT_EVENT[1:0] R/W 00b Interrupt event configuration
0d = INT asserts on any unmasked latched interrupts event
1d = INT asserts on any unmasked live interrupts event
2d = INT asserts for 2 ms (typical) for every 4-ms (typical) duration on any unmasked latched interrupts event
3d = INT asserts for 2 ms (typical) one time on each pulse for any unmasked interrupts event
4-3 PD_ON_FLT_CFG[1:0] R/W 00b Power down configuration during fault for CHx and MCBIAS
0d = Faults are not considered for power down
1d = Only unmasked faults are considered for power down
2d = All faults are considered for power down
3d = Reserved
2 LTCH_READ_CFG R/W 0b Interrupt latch registers readback configuration
0b = All interrupts can be read through the LTCH registers
1b = Only unmasked interrupts can be read through the LTCH registers
1 PD_ON_FLT_RCV_CFG R/W 0b Configuration for power down ADC channels on fault
0b = Auto recovery, ADC channels are powered-up again when fault goes away
1b = Manual recovery, ADC channels are not powered up again when fault goes away
0 LTCH_CLR_ON_READ R/W 0b Configuration for clearing LTCH register bits
0 = LTCH register bits are cleared on register read only if live status is zero
1 = LTCH register bits are cleared on register read irrespective of live status
R/W = Read or Write

In addition to the mask settings, DIAG_CFG10, P1_R80 allows the user to select which MICBIAS faults are used for the power down of MICBIAS and all ADC channels.