SLAAET4 April   2025 MSPM0G3506 , MSPM0G3507 , MSPM0G3518 , MSPM0G3519

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 MCAN Features
  5. 2Sysconfig Configuration for MCAN Module
    1. 2.1 MCAN Clock Frequency
    2. 2.2 MCAN Basic Configuration
      1. 2.2.1 Transmitter Delay Compensation (TDC)
      2. 2.2.2 Bit Timing Parameters
      3. 2.2.3 Message RAM Configuration
        1. 2.2.3.1 Standard and Extended ID Filter Configuration
          1. 2.2.3.1.1 How to Add More Filters
        2. 2.2.3.2 TX MSG RAM
        3. 2.2.3.3 RX MSG RAM
    3. 2.3 Advanced Configuration
    4. 2.4 Retention Configuration
    5. 2.5 Interrupts
    6. 2.6 Pin Configuration and PinMux
  6. 3Demo Project Descriptions
    1. 3.1 TX Buffer Mode
    2. 3.2 TX FIFO Mode
    3. 3.3 RX Buffer Mode
    4. 3.4 RX FIFO Mode
  7. 4Debug and Design Tips to Resolve/Avoid CAN Communication Issues
    1. 4.1 Minimum Number of Nodes Required
    2. 4.2 Why a Transceiver is Needed
    3. 4.3 Bus Off Status
    4. 4.4 Using MCAN in Low Power Mode
    5. 4.5 Debug Checklist
      1. 4.5.1 Programming Issues
      2. 4.5.2 Physical Layer Issues
      3. 4.5.3 Hardware Debug Tips
  8. 5Summary
  9. 6References

MCAN Clock Frequency

Figure 2-1 shows what parameters are included in MCAN Clock Frequency block.

 MCAN Clock Frequency Figure 2-1 MCAN Clock Frequency

Peripheral asynchronous clock (CAN_CLK) for MCAN can be clocked either through HFXT or SYSPLL. This clock configuration has to be done through the SYSCTL section. TI recommends for the MCAN frequency is to be configured as 40MHz.

Note: TI recommends to use HFXT as the clock source for CAN_CLK. The accuracy of SYSOSC does not meet the requirements of applications in special scenarios and cause higher error frames. The recommendation frequency of the CAN_CLK is 20MHz, 40MHz and 80MHz.