SLYY211 October   2021 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1. Message from the editors
  2. System Design
    1. 2.1 Control
      1. 2.1.1 Open loop versus closed loop
    2. 2.2 Feedback control
      1. 2.2.1 Error ratio
    3. 2.3 Dynamic systems
      1. 2.3.1 First order system
      2. 2.3.2 Second order system
    4. 2.4 System stability
      1. 2.4.1 Gain margin
      2. 2.4.2 Phase margin
    5. 2.5 Timing requirements
      1. 2.5.1 Peak/rise time
      2. 2.5.2 Settling time
      3. 2.5.3 Overshoot
      4. 2.5.4 Damping
      5. 2.5.5 Delay
    6. 2.6 Discrete Time Domain
    7. 2.7 Filters
      1. 2.7.1 Filter Types
      2. 2.7.2 Filter Orders
    8. 2.8 Notes
  3. Controllers
    1. 3.1 Linear PID
    2. 3.2 Linear PI
    3. 3.3 Nonlinear PID
    4. 3.4 2P2Z
    5. 3.5 3P3Z
    6. 3.6 Direct form controllers
      1. 3.6.1 DF11
      2. 3.6.2 DF13
      3. 3.6.3 DF22
      4. 3.6.4 DF23
    7. 3.7 Notes
  4. ADC
    1. 4.1 ADC definitions
    2. 4.2 ADC resolution
      1. 4.2.1 ADC resolution for unipolar
      2. 4.2.2 ADC resolution for differential signals
      3. 4.2.3 Resolution voltage vs. full-scale range
    3. 4.3 Quantization error of ADC
    4. 4.4 Total harmonic distortion (THD)
      1. 4.4.1 Total harmonic distortion (VRMS)
      2. 4.4.2 Total harmonic distortion (dBc)
    5. 4.5 AC signals
    6. 4.6 DC signals
    7. 4.7 Settling time and conversion accuracy
    8. 4.8 ADC system noise
    9. 4.9 Notes
  5. Comparator
    1. 5.1 Basic operation
    2. 5.2 Offset and hysteresis
    3. 5.3 Propagation delay
    4. 5.4 Notes
  6. Processing
    1. 6.1 Data representation
    2. 6.2 Central processing unit
      1. 6.2.1 CPU basics
      2. 6.2.2 CPU pipeline
      3. 6.2.3 Characteristics of a real-time processor
      4. 6.2.4 Signal chain
    3. 6.3 Memory
    4. 6.4 Direct memory access (DMA)
    5. 6.5 Interrupts
    6. 6.6 Co-processors and accelerators
    7. 6.7 Notes
  7. Encoders
    1. 7.1 Encoder definitions
    2. 7.2 Types of encoders
    3. 7.3 Description of encoders
      1. 7.3.1 Linear encoders
      2. 7.3.2 Rotary encoders
      3. 7.3.3 Position encoders
      4. 7.3.4 Optical encoders
    4. 7.4 Absolute Vs incremental encoders
      1. 7.4.1 Absolute rotary encoders
      2. 7.4.2 Incremental encoders
    5. 7.5 Notes
  8. Pulse width modulation (PWM)
    1. 8.1 PWM definitions
    2. 8.2 Duty cycle
    3. 8.3 Resolution
    4. 8.4 Deadband
    5. 8.5 Notes
  9. DAC
    1. 9.1 DAC definitions
    2. 9.2 DAC error
      1. 9.2.1 DAC offset error
      2. 9.2.2 DAC gain error
      3. 9.2.3 DAC zero-code error
      4. 9.2.4 DAC full-scale error
      5. 9.2.5 DAC differential non-linearity (DNL)
      6. 9.2.6 DAC integral non-linearity (INL)
      7. 9.2.7 DAC total unadjusted error (TUE)
    3. 9.3 DAC output considerations
      1. 9.3.1 DAC linear range
      2. 9.3.2 DAC settling time
      3. 9.3.3 DAC load regulation
    4. 9.4 Notes
  10. 10Mathematical models
    1. 10.1 Laplace transforms
    2. 10.2 Transfer function
    3. 10.3 Transient response
    4. 10.4 Frequency response
    5. 10.5 Z-domain
    6. 10.6 Notes
  11. 11Important Notice

Filters

Definitions:

  • -3dB Frequency/Cutoff Frequency ( f - 3 d B / f c ): The input frequency that causes the output signal to drop by -3dB relative to the input signal. For a high-pass and low-pass filter there is only one -3dB frequency, but for band-pass, and band-stop there are two -3db frequencies, referred to as f1 and f2 within Table 2-4.
  • Center Frequency ( f 0 ): This is a term that describes the central frequency that lies between the upper and lower cutoff frequencies of band-pass and band-stop filters.
  • Stopband Frequency ( f S ): A particular frequency at which the attenuation reaches a specified value. For low-pass and high-pass filters the frequencies beyond the stopband frequency are reffered to as the stopband. However, for pass-band or stop-band, and notch filters two stopbands exist.
  • Bandwidth (β): The bandwidth is the width of the passband, and the passband is the band of frequencies that do not experience significant attenuation when moving from the input of the filter to the output of the filter
  • Quality Factor (Q): The quality factor of a filter conveys its damping characteristics. In the time domain, damping corresponds to the amount of oscillation in the system’s step response. In the frequency domain, higher Q corresponds to more (positive or negative) peaking in the system’s magnitude response. For a band-pass, band-stop, and notch filter, Q represents the ratio between the center frequency and the -3dB bandwidth, Q =   f 0 / ( f 2 - f 1 )