SLYY228 November   2024

 

  1.   1
  2.   Introduction
  3.   Basics of USB Type-C®
    1.     Abstract
    2.     USB-C data speeds and power levels
    3.     Data and power roles
    4.     USB-C pinout and reversibility
    5.     USB-C cable detection and orientation
    6.     When do you need a USB PD controller?
  4.   History of USB Type-C®
    1.     Abstract
    2.     USB connector basics
    3.     USB and USB PD protocol history
    4.     USB-C vs. USB PD
    5.     Evolution of the USB PD 3.1 specification
  5.   Introduction and Overview of the USB Type-C® and USB PD Specifications
    1.     Abstract
    2.     USB-C connections
    3.     VCONN and messaging types
    4.     Negotiating USB PD power over CC wires
    5.     Data-role swaps
    6.     Power-role swaps
    7.     Introduction to USB PD alternate mode
    8.     Introduction to EPR
  6.   USB signals over USB Type-C®
    1.     Introduction
    2.     USB 2.0 Signaling Over Type-C
    3.     Low speed and full speed
    4.     High speed
    5.     Low-, full- and high-speed data rates
    6.     USB 2.0 signal integrity
    7.     SuperSpeed Signaling over USB-C
    8.     SuperSpeed startup speed negotiation
    9.     SuperSpeed signal integrity challenges
  7.   Signal Multiplexing for USB Type-C®
    1.     USB-C USB 2.0
    2.     USB-C USB 3
    3.     USB PD DisplayPort™ alternate mode multiplexing
    4.     DisplayPort source device (DFP_D) pin assignment C
    5.     DisplayPort source device (DFP_D) pin assignment D
    6.     DisplayPort source device (DFP_D) pin assignment E
    7.     DisplayPort sink device (UFP_D) pin assignment C
    8.     DisplayPort sink device (UFP_D) pin assignment D
    9.     DisplayPort sink device (UFP_D) pin assignment E
  8.   USB4
    1.     USB4 Overview
    2.     USB4 discover and entry process
    3.     USB4 System
    4.     Sideband Communication
    5.     USB4 lanes and data rates
    6.     Loss Budget
    7.     Supporting DisplayPort Alternate Mode and USB4 over SBU1 and SBU2
  9.   Introduction to eUSB2
    1.     Abstract
    2.     eUSB2 overview
    3.     eUSB2 modes
    4.     Other features
  10.   Extended Power Range (EPR)
    1.     Abstract
    2.     What is EPR?
    3.     Technical specifications
    4.     Safety implications >100W
    5.     Handling power negotiation with TI’s PD controllers
    6.     Conclusion
  11.   USB Type-C® and USB power delivery common use cases and block diagrams
    1.     5V USB-C source-only port (no USB PD)
    2.     Basic functional blocks
    3.     5V USB-C source-only port with USB 3.0 data (no USB PD)
    4.     5V USB-C sink-only port (no USB PD)
    5.     5V USB-C DRP (no USB PD)
    6.     20V USB-C source-only port with USB PD
    7.     20V USB-C sink-only port with USB PD
    8.     5V source, 20V sink USB-C port with USB PD and DisplayPort™ Alternate Mode
    9.     20V USB-C DRP with USB PD and a battery charger
  12.   End equipment-specific block diagrams
    1.     Abstract
    2.     Laptops and industrial PCs
    3.     Docking station
    4.     Bluetooth® speaker
    5.     Wi-Fi® routers and smart speakers
    6.     Power tools
  13.   Benefits of a TI PD Controller
    1.     Abstract
    2.     TI solutions to common design challenges
      1.      TI offers highly integrated solution
      2.      TI offers simple configuration tool
      3.      TI products are rigorously validated and USB-IF certified
    3.     Other benefits of using TI PD controllers
      1.      TI offers complete reference design
      2.      TI offers great customer support
      3.      Conclusion

Evolution of the USB PD 3.1 specification

A later chapter will go into more detail on PD3.1 and the extended power range. Here are the major features as summarized by the USB-IF:

  • New 28V, 36V and 48V fixed voltages enable up to 140W, 180W and 240W power levels, respectively. An adjustable voltage supply mode allows the device being powered the ability to request intermediate voltages between 15V and higher to the maximum available fixed voltage of the charger.
  • The power direction is no longer fixed. In other words, the product host or peripheral is enabled to provide power.
  • Each device can negotiate the minimum power required to ensure that power is available if additional requests occur.
  • Intelligent system-level power management through the use of optional hub communication with the PC.
  • Allows low-power cases such as headsets to negotiate for only the power that they require.

While the future remains unclear, there is a movement in the European Union to universalize USB-C connectors across all small electronic devices, including phones and portable chargers, in order to reduce e-waste and simplify consumer ease of use.