SPRACO3 October   2019 INA240 , LMG5200 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1.   Dual-Axis Motor Control Using FCL and SFRA On a Single C2000 MCU
    1.     Trademarks
    2. 1 Introduction
      1. 1.1 Acronyms and Descriptions
    3. 2 Benefits of the C2000 for High-Bandwidth Current Loop
    4. 3 Current Loops in Servo Drives
    5. 4 PWM Update Latency for Dual Motor
    6. 5 Outline of the Fast Current Loop Library
    7. 6 Evaluation Platform Setup
      1. 6.1 Hardware
        1. 6.1.1 LAUNCHXL-F28379D or LAUNCHXL-F280049C
          1. 6.1.1.1 DACs
          2. 6.1.1.2 QEPs
        2. 6.1.2 Inverter BoosterPack - GaN + INA240
        3. 6.1.3 Two Motor Dyno
        4. 6.1.4 System Hardware Connections
        5. 6.1.5 Powering Up the Setup
      2. 6.2 Software
        1. 6.2.1 Incremental Build
        2. 6.2.2 Software Setup for Dual-Axis Servo Drive Projects
    8. 7 System Software Integration and Testing
      1. 7.1 Incremental Build Level 1
        1. 7.1.1 SVGEN Test
        2. 7.1.2 Testing SVGEN With DACs
        3. 7.1.3 Inverter Functionality Verification
      2. 7.2 Incremental Build Level 2
        1. 7.2.1 Connecting motor to INVs
        2. 7.2.2 Testing the Motors and INVs
        3. 7.2.3 Setting Over-current Limit in the Software
        4. 7.2.4 Setting Current Regulator Limits
        5. 7.2.5 Position Encoder Feedback
      3. 7.3 Incremental Build Level 3
        1. 7.3.1 Observation One – Latency
      4. 7.4 Incremental Build Level 4
        1. 7.4.1 Observation
        2. 7.4.2 Dual Motor Run With Speed Loop
      5. 7.5 Incremental Build Level 5
        1. 7.5.1 Dual Motor Run with Position Loop
      6. 7.6 Incremental Build Level 6
        1. 7.6.1 Integrating SFRA Library
        2. 7.6.2 Initial Setup Before Starting SFRA
        3. 7.6.3 SFRA GUIs
        4. 7.6.4 Setting Up the GUIs to Connect to Target Platform
        5. 7.6.5 Running the SFRA GUIs
        6. 7.6.6 Influence of Current Feedback SNR
        7. 7.6.7 Inferences
        8. 7.6.8 Phase Margin vs Gain Crossover Frequency
    9. 8 Summary
    10. 9 References

Setting Over-current Limit in the Software

Over-current monitoring is provided using on-chip comparator subsystem (CMPSS) module. The module has a programmable comparator and a programmable digital filter, the comparator generates the protection signal. The reference to the comparator is user programmable for both positive and negative currents limits. The digital filter module qualifies the comparator output signal, verifying its integrity by periodically sampling and validating the signal for a certain count time within a certain count window, where the periodicity, count, and count window are user programmable.

In the Expressions window, you can see the 'motorVars[0].curLimit' variable that sets the permitted current maximum through inline current shunt sensor.

'motorVars[0].tripFlagDMC' is a flag variable that represents the over-current trip status of the inverter. If this flag is set, then you can adjust the above settings and retry running the inverter by setting the flag 'motorVars[0].clearTripFlagDMC' to 1. This clears 'motorVars[0].tripFlagDMC', and clears the status in related CMPSS registers, and restarts the PWMs for the inverter.

The default current limit setting is to shut down the inverter if the phase current magnitude is greater than 6A. You can fine tune any of these settings to suit their needs. Once satisfactory values are identified, write them down, modify the code with these new values, and rebuild and reload for further tests.