SPRADL9 February   2025 CC1310

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Sensor Controller in Building Automation
    2. 1.2 TI Devices
      1. 1.2.1 CC13x4 Wireless MCUs
      2. 1.2.2 CC26xx Wireless MCUs
  5. 2Sensor Controller
    1. 2.1 Features
    2. 2.2 Sensor Controller Power Modes
      1. 2.2.1 Active Mode
      2. 2.2.2 Low Power Mode
      3. 2.2.3 Standby Mode
      4. 2.2.4 Switching Between Power Modes
        1. 2.2.4.1 24MHz - Startup From Standby and Return to Standby Energy
        2. 2.2.4.2 2MHz - Startup From Standby and Return to Standby Energy
    3. 2.3 Power Measurement Setup
      1. 2.3.1 EnergyTrace™ Software
      2. 2.3.2 Software
      3. 2.3.3 Current Consumption Measurements
      4. 2.3.4 Hardware
  6. 3Building Automation Use-Cases and Techniques using Sensor Controller
    1. 3.1 PIR Motion Detection
      1. 3.1.1 PIR Traditional Signal-Chain
      2. 3.1.2 Capacitor-less Motion Detection Block Diagram
      3. 3.1.3 Digital Signal Processing
        1. 3.1.3.1 Hardware
        2. 3.1.3.2 Digital Signal Processing
    2. 3.2 Glass Break Detection
      1. 3.2.1 Low-Powered and Low-Cost Glass Break Block Diagram
    3. 3.3 Door and Window Sensor
    4. 3.4 Low-Power ADC
      1. 3.4.1 Code Implementation in Sensor Controller Studio
      2. 3.4.2 Measurements
    5. 3.5 Different Sensor Readings with BOOSTXL-ULPSENSE
      1. 3.5.1 Capacitive Touch
      2. 3.5.2 Analog Light Sensor
      3. 3.5.3 Potentiometer (0 to 200kΩ range)
      4. 3.5.4 Ultra-Low Power SPI Accelerometer
      5. 3.5.5 Reed Switch
  7. 4Summary
  8. 5References

EnergyTrace™ Software

For current measurements, traditionally power/current consumption measurements are performed using a power analyzer, which provides detailed insights but often involves expensive, bulky and not always available equipment. An example for how measurements can be done using a power analyzer on the LAUNCHXL-CC1312R1 are shown in Ultra-Low Power Sensing Applications With CC13x2/CC26x2.

Another design is the EnergyTrace™ software which is an energy-based code analysis tool included in Code Composer Studio™ (CSS) IDE version 6.0 and later. EnergyTrace™ simplifies the process significantly allowing developers to measure and analyze real-time energy consumption directly from the board during development. The EnergyTrace™ provides a live tracking of the energy and current signals and provides the mean values for power, voltage and current during the program run as well as a battery life estimation.