SPRADL9 February   2025 CC1310

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Sensor Controller in Building Automation
    2. 1.2 TI Devices
      1. 1.2.1 CC13x4 Wireless MCUs
      2. 1.2.2 CC26xx Wireless MCUs
  5. 2Sensor Controller
    1. 2.1 Features
    2. 2.2 Sensor Controller Power Modes
      1. 2.2.1 Active Mode
      2. 2.2.2 Low Power Mode
      3. 2.2.3 Standby Mode
      4. 2.2.4 Switching Between Power Modes
        1. 2.2.4.1 24MHz - Startup From Standby and Return to Standby Energy
        2. 2.2.4.2 2MHz - Startup From Standby and Return to Standby Energy
    3. 2.3 Power Measurement Setup
      1. 2.3.1 EnergyTrace™ Software
      2. 2.3.2 Software
      3. 2.3.3 Current Consumption Measurements
      4. 2.3.4 Hardware
  6. 3Building Automation Use-Cases and Techniques using Sensor Controller
    1. 3.1 PIR Motion Detection
      1. 3.1.1 PIR Traditional Signal-Chain
      2. 3.1.2 Capacitor-less Motion Detection Block Diagram
      3. 3.1.3 Digital Signal Processing
        1. 3.1.3.1 Hardware
        2. 3.1.3.2 Digital Signal Processing
    2. 3.2 Glass Break Detection
      1. 3.2.1 Low-Powered and Low-Cost Glass Break Block Diagram
    3. 3.3 Door and Window Sensor
    4. 3.4 Low-Power ADC
      1. 3.4.1 Code Implementation in Sensor Controller Studio
      2. 3.4.2 Measurements
    5. 3.5 Different Sensor Readings with BOOSTXL-ULPSENSE
      1. 3.5.1 Capacitive Touch
      2. 3.5.2 Analog Light Sensor
      3. 3.5.3 Potentiometer (0 to 200kΩ range)
      4. 3.5.4 Ultra-Low Power SPI Accelerometer
      5. 3.5.5 Reed Switch
  7. 4Summary
  8. 5References

Low-Power ADC

As mentioned previously, the 12bit, analog-to-digital converter (ADC) peripheral block included in CC13x2 and CC26x2 devices, which is typically used by the Sensor Controller, requires the SCLK_HF signal, and is therefore not available in low-power (2MHz) mode. The goal of this section is to highlight an alternative design creating an 8bit, successive-approximation (SAR)-type, low-power, ADC using the CC13x2/4 and CC26x2/4 Sensor Controller running in 2MHz mode. In this design, the comparator and digital-to-analog converter (DAC) peripherals are used which are available in low-power mode.

 SAR ADC Block DiagramFigure 3-12 SAR ADC Block Diagram

The SAR ADC consists of four major blocks:

  • Sample and hold (S/H) block locks the analog voltage level during sampling.
  • SAR logic block is replicated using the Sensor Controller.
  • DAC whose output is controlled by the SAR logic block.
  • Comparator compares the analog signal to the DAC output.