TIDUDS9B December   2017  – November 2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Conditions of Use: Assumption
        1. 2.2.1.1 Generic Assumptions
        2. 2.2.1.2 Specific Assumptions
      2. 2.2.2 Diagnostics Coverage
        1. 2.2.2.1 Dual-Channel Monitoring
        2. 2.2.2.2 Checking ISO1211 Functionality With MCU (SIL1)
        3. 2.2.2.3 Checking TPS22919 Functionality With MCU (SIL1)
        4. 2.2.2.4 Checking TPS27S100 Functionality With MCU (SIL1)
        5. 2.2.2.5 Optional Monitoring Using RDY Pin of ISO5452, ISO5852S or UCC21750 Integrated Analog-to-PWM Isolated Sensor
      3. 2.2.3 Drive State
    3. 2.3 Highlighted Products
      1. 2.3.1 ISO1211
      2. 2.3.2 TPS27S100
      3. 2.3.3 TPS22919
      4. 2.3.4 ISO5852S, ISO5452
    4. 2.4 System Design Theory
      1. 2.4.1 Digital Input Receiver for STO
      2. 2.4.2 STO_1 Signal Flow Path for Controlling VCC1
      3. 2.4.3 STO_2 Signal Flow Path
        1. 2.4.3.1 High-Side Switch for Controlling Secondary-Side Supply Voltage of Gate Driver
        2. 2.4.3.2 Powering up Secondary Side: VCC2 of Gate Driver
      4. 2.4.4 Gate Driver Design
      5. 2.4.5 STO_FB Signal Flow Path
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 PCB Overview
    2. 3.2 Testing and Results
      1. 3.2.1 Logic High and Logic Low STO Thresholds
      2. 3.2.2 Validation of STO1 Signal
        1. 3.2.2.1 Propagation of STO1 to VCC1 of Gate Driver
        2. 3.2.2.2 1-ms STO Pulse Rejection
        3. 3.2.2.3 Diagnostic Pulses From MCU Interface
      3. 3.2.3 Validation of STO2 Signals
        1. 3.2.3.1 Propagation of STO2 to VCC2 of Gate Driver
        2. 3.2.3.2 1-ms Pulse Rejection
        3. 3.2.3.3 Diagnostic Pulses From MCU
        4. 3.2.3.4 Inrush Current Measurement
      4. 3.2.4 3.3-V Voltage Rail From Switcher
      5. 3.2.5 60-V Input Voltage and Reverse Polarity Protection
      6. 3.2.6 Validation of Trip Zone Functionality
  9. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 Layer Plots
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  10. 5Related Documentation
    1. 5.1 Trademarks
  11. 6About the Author
  12. 7Recognition
  13. 8Revision History

Checking TPS27S100 Functionality With MCU (SIL1)

The MCU interface periodically sends 200-µs pulses MCU_Diag_Ctrl_Out2 with logic low for diagnostic purposes. The output of the switch is connected to the general-purpose input/outputs (GPIOS) of the MCU (Monitor_2), as Figure 2-4 shows by using a resistor divide network. And also connect to the STO_FB subsystem as STO_2_FB input.

Figure 2-4 STO_2 Signal Flow Path

The gate driver does not power off during these periodic pulses. This reference design uses a 20-µF capacitor to hold the 24-V secondary supply voltage. The TPS27S100 switch provides full diagnostics by accurately monitoring the output current. The output current is translated into volume, which is then fed back to the MCU, this feature enables intelligent control of the load. If a short or stuck high was found, the MCU puts the 3-phase IGBT inverter into a safe state by driving both diagnostic pulses MCU_Diag_Ctrl_Out1 and MCU_Diag_Ctrl_Out2 continuously low. This in turn disables the six gate drivers, the six IGBT will be turned off and the drive will enter the safe state.

Moreover, STO_2_FB is an active low signal and indicates the load switch state which works with the other channel STO_1_FB together to indicate the drive state. This state can be used for example by an external safety PLC to recognize a single fault in either STO_1 or STO_2 systems and take appropriate actions. The safety PLC and related action are out of scope for this reference design.