TIDUFE9 August   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 Electricity Meters
    3. 1.3 Circuit Breakers
    4. 1.4 EV Chargers
    5. 1.5 Protection and Relay
    6. 1.6 Rogowski Coil-Based Current Sensor
      1. 1.6.1 Principle
      2. 1.6.2 Rogowski Coil Types
      3. 1.6.3 Integration Methods
      4. 1.6.4 Rogowski Coil Selection
  8. 2System Overview
    1. 2.1 Block Diagram
      1. 2.1.1 Differential Gain Amplifier
      2. 2.1.2 High-Pass Filter
      3. 2.1.3 Low-Pass Filter
      4. 2.1.4 Active Integrator
    2. 2.2 Design Considerations
      1. 2.2.1 Components Selection
        1. 2.2.1.1 RC Component Selection
        2. 2.2.1.2 RG Selection for Gain Setting
    3. 2.3 Highlighted Products
      1. 2.3.1 INA828
      2. 2.3.2 TLV9001
      3. 2.3.3 LM27762
  9. 3System Design Theory
    1. 3.1 Schematics to Layout
      1. 3.1.1 Rogowski Input Connectors
      2. 3.1.2 Gain Setting Resistor Chain
      3. 3.1.3 Gain Amplifier and High-Pass Filter Stage
      4. 3.1.4 Active Integrator Stage
      5. 3.1.5 Output Stage
      6. 3.1.6 Power Supply
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
      1. 4.2.1 Full System Block Diagram
      2. 4.2.2 Test System
      3. 4.2.3 Rogowski Coil
      4. 4.2.4 TIDA-010986
      5. 4.2.5 ADS131M08 Metrology Evaluation Module
      6. 4.2.6 GUI
        1. 4.2.6.1 Getting Started
          1. 4.2.6.1.1 PCB Rogowski Coil Setup
          2. 4.2.6.1.2 TIDA-010986 Connectors
            1. 4.2.6.1.2.1 Input Terminal Block
            2. 4.2.6.1.2.2 Power Connection
            3. 4.2.6.1.2.3 Output Connections
          3. 4.2.6.1.3 ADS131M08 Metrology Evaluation Module Connectors
    3. 4.3 Test Results
      1. 4.3.1 Functional Test
      2. 4.3.2 Accuracy Measurements
        1. 4.3.2.1 No Load Conditions
          1. 4.3.2.1.1 Objective
          2. 4.3.2.1.2 Setup
          3. 4.3.2.1.3 Requirements
          4. 4.3.2.1.4 Results
        2. 4.3.2.2 Initial Load Operation Test
          1. 4.3.2.2.1 Objective
          2. 4.3.2.2.2 Setup
          3. 4.3.2.2.3 Requirements
          4. 4.3.2.2.4 Results
        3. 4.3.2.3 Accuracy Test at Different Load Conditions
          1. 4.3.2.3.1 Objective
          2. 4.3.2.3.2 Setup
          3. 4.3.2.3.3 Requirements
          4. 4.3.2.3.4 Results
        4. 4.3.2.4 Variation of Power Factor Test
          1. 4.3.2.4.1 Objective
          2. 4.3.2.4.2 Setup
          3. 4.3.2.4.3 Requirements
          4. 4.3.2.4.4 Results
        5. 4.3.2.5 Variation of Voltage Test
          1. 4.3.2.5.1 Objective
          2. 4.3.2.5.2 Setup
          3. 4.3.2.5.3 Requirements
          4. 4.3.2.5.4 Results
        6. 4.3.2.6 Variation of Frequency Test
          1. 4.3.2.6.1 Objective
          2. 4.3.2.6.2 Setup
          3. 4.3.2.6.3 Requirements
          4. 4.3.2.6.4 Results
        7. 4.3.2.7 Phase Sequence Reversal Test
          1. 4.3.2.7.1 Objective
          2. 4.3.2.7.2 Setup
          3. 4.3.2.7.3 Requirements
          4. 4.3.2.7.4 Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 Layout Prints
    2. 5.2 Tools
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5.     Trademarks
  12. 6About the Author

Low-Pass Filter

Rogowski coils are di/dt sensors measuring the rate of change of current rather than the current. As a result, Rogowski coils are highly sensitive to rapid transients and switching noise, especially near the zero-crossing point of the current waveform. At zero crossing, the current (i) is momentarily at zero leading to sharp voltage spikes and high-frequency ringing at the output of the coil. Zero crossing spikes and ringing can distort the signal and introduce non-linearity in the signal chain.

To address the zero crossing issues and non-linearity, a low-pass filter is implemented at the input of the differential amplifier. The purpose of the low-pass filter is to attenuate high-frequency components, including the unwanted spikes and ringing, thereby improving signal integrity and making the system behave more linearly.