TIDUFE9 August   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 Electricity Meters
    3. 1.3 Circuit Breakers
    4. 1.4 EV Chargers
    5. 1.5 Protection and Relay
    6. 1.6 Rogowski Coil-Based Current Sensor
      1. 1.6.1 Principle
      2. 1.6.2 Rogowski Coil Types
      3. 1.6.3 Integration Methods
      4. 1.6.4 Rogowski Coil Selection
  8. 2System Overview
    1. 2.1 Block Diagram
      1. 2.1.1 Differential Gain Amplifier
      2. 2.1.2 High-Pass Filter
      3. 2.1.3 Low-Pass Filter
      4. 2.1.4 Active Integrator
    2. 2.2 Design Considerations
      1. 2.2.1 Components Selection
        1. 2.2.1.1 RC Component Selection
        2. 2.2.1.2 RG Selection for Gain Setting
    3. 2.3 Highlighted Products
      1. 2.3.1 INA828
      2. 2.3.2 TLV9001
      3. 2.3.3 LM27762
  9. 3System Design Theory
    1. 3.1 Schematics to Layout
      1. 3.1.1 Rogowski Input Connectors
      2. 3.1.2 Gain Setting Resistor Chain
      3. 3.1.3 Gain Amplifier and High-Pass Filter Stage
      4. 3.1.4 Active Integrator Stage
      5. 3.1.5 Output Stage
      6. 3.1.6 Power Supply
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
      1. 4.2.1 Full System Block Diagram
      2. 4.2.2 Test System
      3. 4.2.3 Rogowski Coil
      4. 4.2.4 TIDA-010986
      5. 4.2.5 ADS131M08 Metrology Evaluation Module
      6. 4.2.6 GUI
        1. 4.2.6.1 Getting Started
          1. 4.2.6.1.1 PCB Rogowski Coil Setup
          2. 4.2.6.1.2 TIDA-010986 Connectors
            1. 4.2.6.1.2.1 Input Terminal Block
            2. 4.2.6.1.2.2 Power Connection
            3. 4.2.6.1.2.3 Output Connections
          3. 4.2.6.1.3 ADS131M08 Metrology Evaluation Module Connectors
    3. 4.3 Test Results
      1. 4.3.1 Functional Test
      2. 4.3.2 Accuracy Measurements
        1. 4.3.2.1 No Load Conditions
          1. 4.3.2.1.1 Objective
          2. 4.3.2.1.2 Setup
          3. 4.3.2.1.3 Requirements
          4. 4.3.2.1.4 Results
        2. 4.3.2.2 Initial Load Operation Test
          1. 4.3.2.2.1 Objective
          2. 4.3.2.2.2 Setup
          3. 4.3.2.2.3 Requirements
          4. 4.3.2.2.4 Results
        3. 4.3.2.3 Accuracy Test at Different Load Conditions
          1. 4.3.2.3.1 Objective
          2. 4.3.2.3.2 Setup
          3. 4.3.2.3.3 Requirements
          4. 4.3.2.3.4 Results
        4. 4.3.2.4 Variation of Power Factor Test
          1. 4.3.2.4.1 Objective
          2. 4.3.2.4.2 Setup
          3. 4.3.2.4.3 Requirements
          4. 4.3.2.4.4 Results
        5. 4.3.2.5 Variation of Voltage Test
          1. 4.3.2.5.1 Objective
          2. 4.3.2.5.2 Setup
          3. 4.3.2.5.3 Requirements
          4. 4.3.2.5.4 Results
        6. 4.3.2.6 Variation of Frequency Test
          1. 4.3.2.6.1 Objective
          2. 4.3.2.6.2 Setup
          3. 4.3.2.6.3 Requirements
          4. 4.3.2.6.4 Results
        7. 4.3.2.7 Phase Sequence Reversal Test
          1. 4.3.2.7.1 Objective
          2. 4.3.2.7.2 Setup
          3. 4.3.2.7.3 Requirements
          4. 4.3.2.7.4 Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 Layout Prints
    2. 5.2 Tools
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5.     Trademarks
  12. 6About the Author

Output Stage

The output stage provides two types of signals for evaluation and flexibility in testing:

  • Hardware-Integrated Signal Output: This path provides the output after analog integration using the TLV9001 op amp. This method represents the fully conditioned current signal from the Rogowski coil (CT-like signal), ready for direct measurement and digitization.
  • Amplified Signal without Hardware Integration: This path bypasses the integrator stage, allowing the user to test software-based integration methods. The method provides the raw amplified Rogowski coil signal, which is especially useful when evaluating digital integration performance in the ADS131M08 Metrology Evaluation Module.

The output connectors are designed to directly interface with the ADS131M08 Metrology Evaluation Module, eliminating the need for manual jumper wires or rework. This streamlined approach improves test efficiency, reduces errors from miswiring, and makes sure of a reliable connection between the signal conditioning board and the metrology platform.

The corresponding PCB layout shows the two different output connectors. The top one being the hardware integrated signal and the bottom one being the amplified signal pre-integration.

TIDA-010986 Output Connectors SchematicFigure 3-9 Output Connectors Schematic
TIDA-010986 Output ConnectorsFigure 3-10 Output Connectors