Product details

Number of channels 8 Technology family AC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type 3-State Clock frequency (max) (MHz) 100 IOL (max) (mA) 24 IOH (max) (mA) -24 Supply current (max) (µA) 80 Features Balanced outputs, Flow-through pinout, High speed (tpd 10-50ns), Inverting output, Positive input clamp diode Operating temperature range (°C) -40 to 85 Rating Catalog
Number of channels 8 Technology family AC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type 3-State Clock frequency (max) (MHz) 100 IOL (max) (mA) 24 IOH (max) (mA) -24 Supply current (max) (µA) 80 Features Balanced outputs, Flow-through pinout, High speed (tpd 10-50ns), Inverting output, Positive input clamp diode Operating temperature range (°C) -40 to 85 Rating Catalog
PDIP (N) 20 228.702 mm² 24.33 x 9.4 SOIC (DW) 20 131.84 mm² 12.8 x 10.3 SSOP (DB) 20 56.16 mm² 7.2 x 7.8 TSSOP (PW) 20 41.6 mm² 6.5 x 6.4
  • 2-V to 6-V VCC Operation
  • Inputs Accept Voltages to 6 V
  • Max tpd of 9 ns at 5 V
  • 3-State Inverting Outputs Drive Bus Lines Directly
  • Full Parallel Access for Loading
  • Flow-Through Architecture to Optimize PCB Layout

  • 2-V to 6-V VCC Operation
  • Inputs Accept Voltages to 6 V
  • Max tpd of 9 ns at 5 V
  • 3-State Inverting Outputs Drive Bus Lines Directly
  • Full Parallel Access for Loading
  • Flow-Through Architecture to Optimize PCB Layout

The ’AC563 devices are octal D-type transparent latches with 3-state outputs. When the latch-enable (LE) input is high, the Q\ outputs follow the complements of the data (D) inputs. When LE is taken low, the Q\ outputs are latched at the inverse logic levels set up at the D inputs.

A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

(OE)\ does not affect internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The ’AC563 devices are octal D-type transparent latches with 3-state outputs. When the latch-enable (LE) input is high, the Q\ outputs follow the complements of the data (D) inputs. When LE is taken low, the Q\ outputs are latched at the inverse logic levels set up at the D inputs.

A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

(OE)\ does not affect internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare products
Pin-for-pin with same functionality to the compared device.
SN74LVC573A ACTIVE Octal Transparent D-Type Latches With 3-State Outputs

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 14
Type Title Date
* Data sheet SN54AC563, SN74AC563 datasheet (Rev. C) 23 Oct 2003
More literature Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
More literature Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
More literature Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
More literature HiRel Unitrode Power Management Brochure 07 Jul 2009
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
More literature Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
More literature TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
More literature Designing With Logic (Rev. C) 01 Jun 1997
More literature Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
More literature Live Insertion 01 Oct 1996
More literature Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc 01 Apr 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Generic Logic EVM Supporting 14 through 24 Pin PW, DB, D, DW, NS, DYY, and DGV Packages

This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, DYY or DGV package in a 14 to 24 pin count.

User guide: PDF | HTML
Not available on TI.com
Package Pins Download
PDIP (N) 20 View options
SOIC (DW) 20 View options
SSOP (DB) 20 View options
TSSOP (PW) 20 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos