제품 상세 정보

Current consumption (mA) 80 Frequency (min) (MHz) 3300 Frequency (max) (MHz) 4200 Gain (typ) (dB) 17.5 Noise figure (typ) (dB) 3 OIP3 (typ) (dBm) 34.5 P1dB (typ) (dBm) 18 Number of channels 1 Operating temperature range (°C) -40 to 105 Type Active Balun Rating Catalog
Current consumption (mA) 80 Frequency (min) (MHz) 3300 Frequency (max) (MHz) 4200 Gain (typ) (dB) 17.5 Noise figure (typ) (dB) 3 OIP3 (typ) (dBm) 34.5 P1dB (typ) (dBm) 18 Number of channels 1 Operating temperature range (°C) -40 to 105 Type Active Balun Rating Catalog
WQFN (RRL) 12 4 mm² 2 x 2
  • Single-channel, single-ended input to differential output RF gain block amplifier
  • Supports 3.3 GHz – 3.8 GHz band directly or 3.7 GHz – 4.2 GHz band with external matching components
  • 17.5 dB typical gain across the band
  • Less than 3 dB noise figure
  • 34.5 dBm OIP3
  • 18 dBm output P1 dB
  • 270 mW power consumption on 3.3 V single supply
  • Up to 105°C TC operating temperature
  • Single-channel, single-ended input to differential output RF gain block amplifier
  • Supports 3.3 GHz – 3.8 GHz band directly or 3.7 GHz – 4.2 GHz band with external matching components
  • 17.5 dB typical gain across the band
  • Less than 3 dB noise figure
  • 34.5 dBm OIP3
  • 18 dBm output P1 dB
  • 270 mW power consumption on 3.3 V single supply
  • Up to 105°C TC operating temperature

The LMH9235 device is a high-performance, single-channel, single-ended input to differential output receive RF gain block amplifier supporting 3.6 GHz center frequency band. The device is well suited to support requirements for the next generation 5G AAS or small cell applications where LNA gain is not sufficient to drive full-scale of an analog front-end (AFE). The RF amplifier provides 17 dB typical gain with good linearity performance of 34 dBm Output IP3, while maintaining about 3 dB noise figure across the whole 1 dB bandwidth. The device is internally matched for 50 Ω impedance at both the single-ended input as well as the differential output providing easy interface with an RF-sampling or Zero-IF analog front-end (AFE).

Operating on a single 3.3 V supply, the device consumes about 270 mW of active power making it suitable for high-density 5G massive MIMO applications. Also, the device is available in a space saving 2 mm x 2 mm, 12-pin QFN package. The device is rated for an operating temperature of up to 105°C to provide a robust system design. There is a 1.8 V JEDEC compliant power down pin available for fast power down and power up of the device suitable for time division duplex (TDD) systems.

The LMH9235 device is a high-performance, single-channel, single-ended input to differential output receive RF gain block amplifier supporting 3.6 GHz center frequency band. The device is well suited to support requirements for the next generation 5G AAS or small cell applications where LNA gain is not sufficient to drive full-scale of an analog front-end (AFE). The RF amplifier provides 17 dB typical gain with good linearity performance of 34 dBm Output IP3, while maintaining about 3 dB noise figure across the whole 1 dB bandwidth. The device is internally matched for 50 Ω impedance at both the single-ended input as well as the differential output providing easy interface with an RF-sampling or Zero-IF analog front-end (AFE).

Operating on a single 3.3 V supply, the device consumes about 270 mW of active power making it suitable for high-density 5G massive MIMO applications. Also, the device is available in a space saving 2 mm x 2 mm, 12-pin QFN package. The device is rated for an operating temperature of up to 105°C to provide a robust system design. There is a 1.8 V JEDEC compliant power down pin available for fast power down and power up of the device suitable for time division duplex (TDD) systems.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
3개 모두 보기
유형 직함 날짜
* Data sheet LMH9235 3.3 GHz – 4.2 GHz Single-Ended to Differential Amplifier with Integrated Balun datasheet (Rev. C) PDF | HTML 2021/05/06
EVM User's guide LMH9235 Evaluation Module User's Guide 2020/05/05
Certificate LMH9235RRLEVM EU Declaration of Conformity (DoC) 2020/04/14

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

AFE79-LMH9-EVM — 액티브 발룬 LMH9126, LMH9226, LMH9135 및 LMH9235가 포함된 AFE7920 레퍼런스 디자인 평가 보드

The AFE79-LMH9-EVM evaluation module (EVM) is a board for evaluating the performance of the AFE79xx family of integrated RF sampling transceivers interfaced with the LMH9xxx family of active baluns. The AFE79-LMH9-EVM showcases the AFE7920, LMH9126, LMH9226, LMH9135, and LMH9235. The device is (...)
사용 설명서: PDF
시뮬레이션 모델

LMH9235 S-Parameter Models

SBOMB72.ZIP (5 KB) - S-Parameter Model
패키지 CAD 기호, 풋프린트 및 3D 모델
WQFN (RRL) 12 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상