Product details

Applications Encoders/event counters, Inductive touch buttons, Metal proximity detection Number of input channels 2 Vs (max) (V) 3.6 Vs (min) (V) 2.7 Rating Automotive Operating temperature range (°C) -40 to 125
Applications Encoders/event counters, Inductive touch buttons, Metal proximity detection Number of input channels 2 Vs (max) (V) 3.6 Vs (min) (V) 2.7 Rating Automotive Operating temperature range (°C) -40 to 125
WSON (DNT) 12 16 mm² 4 x 4
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified With the Following Results:
    • Device Temperature Grade 1:–40°C to +125°C
      Ambient Operating Temperature Range
    • Device HBM ESD Classification Level 2
    • Device CDM ESD Classification Level C5
  • Easy-to-use – Minimal Configuration Required
  • Measure up to 4 Sensors with One IC
  • Multiple Channels Support Environmental and
    Aging Compensation
  • Multi-Channel Remote Sensing Provides Lowest
    System Cost
  • Pin-Compatible Medium and High-resolution Options
    • LDC1312-Q1/LDC1314-Q1: 2/4-ch 12-bit LDC
    • LDC1612-Q1/LDC1614-Q1: 2/4-ch 28-bit LDC
  • Supports Wide Sensor Frequency Range of 1kHz
    to 10MHz
  • Power Consumption:
    • 35 µA Low Power Sleep Mode
    • 200 nA Shutdown Mode
  • 3.3V Operation
  • Support Internal or External Reference Clock
  • Immune to DC Magnetic Fields and Magnets
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified With the Following Results:
    • Device Temperature Grade 1:–40°C to +125°C
      Ambient Operating Temperature Range
    • Device HBM ESD Classification Level 2
    • Device CDM ESD Classification Level C5
  • Easy-to-use – Minimal Configuration Required
  • Measure up to 4 Sensors with One IC
  • Multiple Channels Support Environmental and
    Aging Compensation
  • Multi-Channel Remote Sensing Provides Lowest
    System Cost
  • Pin-Compatible Medium and High-resolution Options
    • LDC1312-Q1/LDC1314-Q1: 2/4-ch 12-bit LDC
    • LDC1612-Q1/LDC1614-Q1: 2/4-ch 28-bit LDC
  • Supports Wide Sensor Frequency Range of 1kHz
    to 10MHz
  • Power Consumption:
    • 35 µA Low Power Sleep Mode
    • 200 nA Shutdown Mode
  • 3.3V Operation
  • Support Internal or External Reference Clock
  • Immune to DC Magnetic Fields and Magnets

The LDC1312-Q1 and LDC1314-Q1 are 2- and 4-channel, 12-bit inductance to digital converters (LDCs) for inductive sensing solutions. With multiple channels and support for remote sensing, the LDC1312-Q1 and LDC1314-Q1 enable the performance and reliability benefits of inductive sensing to be realized at minimal cost and power. The products are easy to use, only requiring that the sensor frequency be within 1 kHz and 10 MHz to begin sensing. The wide 1 kHz to 10 MHz sensor frequency range also enables use of very small PCB coils, further reducing sensing solution cost and size.

The LDC1312-Q1 and LDC1314-Q1 offer well-matched channels, which allow for differential and ratiometric measurements. This enables designers to use one channel to compensate their sensing for environmental and aging conditions such as temperature, humidity, and mechanical drift. Given their ease of use, low power, and low system cost these products enable designers to greatly improve on existing sensing solutions and to introduce brand new sensing capabilities to products in all markets, especially consumer and industrial applications. Inductive sensing offers better performance, reliability, and flexibility than competitive sensing technologies at lower system cost and power.

The LDC1312-Q1 and LDC1314-Q1 are easily configured via an I2C interface. The two-channel LDC1312-Q1 is available in a WSON-12 package and the four-channel LDC1314-Q1 is available in a WQFN-16 package.

The LDC1312-Q1 and LDC1314-Q1 are 2- and 4-channel, 12-bit inductance to digital converters (LDCs) for inductive sensing solutions. With multiple channels and support for remote sensing, the LDC1312-Q1 and LDC1314-Q1 enable the performance and reliability benefits of inductive sensing to be realized at minimal cost and power. The products are easy to use, only requiring that the sensor frequency be within 1 kHz and 10 MHz to begin sensing. The wide 1 kHz to 10 MHz sensor frequency range also enables use of very small PCB coils, further reducing sensing solution cost and size.

The LDC1312-Q1 and LDC1314-Q1 offer well-matched channels, which allow for differential and ratiometric measurements. This enables designers to use one channel to compensate their sensing for environmental and aging conditions such as temperature, humidity, and mechanical drift. Given their ease of use, low power, and low system cost these products enable designers to greatly improve on existing sensing solutions and to introduce brand new sensing capabilities to products in all markets, especially consumer and industrial applications. Inductive sensing offers better performance, reliability, and flexibility than competitive sensing technologies at lower system cost and power.

The LDC1312-Q1 and LDC1314-Q1 are easily configured via an I2C interface. The two-channel LDC1312-Q1 is available in a WSON-12 package and the four-channel LDC1314-Q1 is available in a WQFN-16 package.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
LDC3114-Q1 ACTIVE Automotive 4-channel inductance-to-digital converter for low-power proximity & touch-button sensing Similar device with improved EMI performance for linear sensing and touch-button applications

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 16
Type Title Date
* Data sheet LDC1312-Q1, LDC1314-Q1 Multi-Channel 12-Bit Inductance to Digital Converter (LDC) for Inductive Sensing datasheet PDF | HTML 29 Apr 2016
Application note Common Inductive and Capacitive Sensing Applications (Rev. B) PDF | HTML 22 Jun 2021
Application note Simulate Inductive Sensors Using FEMM (Finite Element Method Magnetics) (Rev. A) PDF | HTML 16 Jun 2021
Application note LDC Device Selection Guide (Rev. D) PDF | HTML 15 Jun 2021
Application note Sensor Design for Inductive Sensing Applications Using LDC (Rev. C) PDF | HTML 21 May 2021
Application note LDC Target Design (Rev. B) PDF | HTML 13 May 2021
Application note Configuring Inductive-to-Digital-Converters for Parallel Resistance (RP) Variati (Rev. B) 11 Nov 2019
Application note EMI Considerations for Inductive Sensing 22 Feb 2017
Application note LDC1312, LDC1314, LDC1612, LDC1614 Sensor Status Monitoring 09 Oct 2016
EVM User's guide LDC131x and LDC161x EVM User’s Guide (Rev. A) 21 Sep 2016
Application note Setting LDC1312/4, LDC1612/4, and LDC1101 Sensor Drive Configuration 05 Apr 2016
Application note Inductive Sensing Touch-On-Metal Buttons Design Guide PDF | HTML 30 Mar 2016
Application note Power Reduction Techniques for the LDC131x/161x for Inductive Sensing PDF | HTML 18 Mar 2016
Application note Optimizing L Measurement Resolution for the LDC1312 and LDC1314 12 Feb 2016
Application note Measuring Rp of an L-C Sensor for Inductive Sensing 01 Oct 2015
User guide LDC Reference Coils User’s Guide 14 May 2015

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos