SLOS224J July   1999  – February 2024 THS4031 , THS4032

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information: THS4031
    5. 5.5  Thermal Information: THS4032
    6. 5.6  Electrical Characteristics: THS4031, RL = 150 Ω
    7. 5.7  Electrical Characteristics: THS4031, RL = 1 kΩ
    8. 5.8  Electrical Characteristics: THS4032, RL = 150 Ω
    9. 5.9  Electrical Characteristics: THS4032, RL = 1 kΩ
    10. 5.10 Typical Characteristics: THS4031
    11. 5.11 Typical Characteristics: THS4032
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagrams
    3. 6.3 Feature Description
      1. 6.3.1 Offset Nulling
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Driving a Capacitive Load
      2. 7.1.2 Low-pass Filter Configurations
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Selection of Multiplexer
        2. 7.2.2.2 Signal Source
        3. 7.2.2.3 Driving Amplifier
        4. 7.2.2.4 Driving Amplifier Bandwidth Restriction
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 General PowerPAD™ Design Considerations
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The THS403x family can operate off a single supply or with dual supplies. Choose supplies that provide for the required headroom to supply rails as specified by the common-mode input range (CMIR). Operating from a single supply can have numerous advantages. With the negative supply at ground, the DC errors due to the –PSRR term are minimized. Supplies must be decoupled with low inductance capacitors to ground as close to the amplifier as possible. When operating on a board with high-speed digital signals, make sure to provide isolation between digital signal noise and the analog input pins. When using a ground plane, removing the ground plane close to input sensitive pins reduces stray parasitics that adversely impact device performance. For split-supply operation, an optional supply decoupling capacitor across the two power supplies improves second harmonic distortion performance.