JAJSJS9C July   2023  – July 2025 DRV8262

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. ピン構成および機能
  6. 仕様
    1. 5.1 絶対最大定格
    2. 5.2 ESD 定格
    3. 5.3 推奨動作条件
    4. 5.4 熱に関する情報
      1. 5.4.1 過渡熱インピーダンスと電流能力
    5. 5.5 電気的特性
    6. 5.6 代表的特性
  7. 詳細説明
    1. 6.1  概要
    2. 6.2  機能ブロック図
    3. 6.3  機能説明
      1. 6.3.1 スペクトラム拡散
    4. 6.4  デバイスの動作モード
      1. 6.4.1 デュアル H ブリッジ モード (MODE1 = 0)
      2. 6.4.2 シングル H ブリッジ モード (MODE1 = 1)
    5. 6.5  電流検出とレギュレーション
      1. 6.5.1 電流検出とフィードバック
      2. 6.5.2 電流レギュレーション
        1. 6.5.2.1 ミックス ディケイ
        2. 6.5.2.2 スマート チューン ダイナミック ディケイ
      3. 6.5.3 外付け抵抗による電流検出
    6. 6.6  チャージ ポンプ
    7. 6.7  リニア電圧レギュレータ
    8. 6.8  VCC 電圧電源
    9. 6.9  ロジック レベル、トライレベル、クワッドレベルのピン構造図
    10. 6.10 保護回路
      1. 6.10.1 VM 低電圧誤動作防止 (UVLO)
      2. 6.10.2 VCP 低電圧誤動作防止 (CPUV)
      3. 6.10.3 ロジック電源パワーオン リセット (POR)
      4. 6.10.4 過電流保護 (OCP)
      5. 6.10.5 サーマル シャットダウン (OTSD)
      6. 6.10.6 nFAULT 出力
      7. 6.10.7 フォルト条件のまとめ
    11. 6.11 デバイスの機能モード
      1. 6.11.1 スリープ モード
      2. 6.11.2 動作モード
      3. 6.11.3 nSLEEP リセット パルス
      4. 6.11.4 機能モードのまとめ
  8. アプリケーションと実装
    1. 7.1 アプリケーション情報
      1. 7.1.1 ブラシ付き DC モータの駆動
        1. 7.1.1.1 ブラシ付き DC モータ ドライバの代表的なアプリケーション
        2. 7.1.1.2 電力損失の計算 - デュアル H ブリッジ
        3. 7.1.1.3 電力損失の計算 - シングル H ブリッジ
        4. 7.1.1.4 接合部温度の推定
        5. 7.1.1.5 アプリケーション特性の波形
      2. 7.1.2 ステッパ モーターの駆動
        1. 7.1.2.1 ステッパ ドライバの代表的なアプリケーション
        2. 7.1.2.2 電力損失の計算
        3. 7.1.2.3 接合部温度の推定
      3. 7.1.3 熱電冷却器 (TEC) の駆動
    2. 7.2 電源に関する推奨事項
      1. 7.2.1 バルク コンデンサ
      2. 7.2.2 電源
    3. 7.3 レイアウト
      1. 7.3.1 レイアウトのガイドライン
      2. 7.3.2 レイアウト例
  9. パッケージの熱に関する考慮事項
    1. 8.1 DDW パッケージ
      1. 8.1.1 熱性能
        1. 8.1.1.1 定常状態熱性能
        2. 8.1.1.2 過渡熱性能
    2. 8.2 DDV パッケージ
    3. 8.3 PCB 材料に関する推奨事項
  10. デバイスおよびドキュメントのサポート
    1. 9.1 ドキュメントのサポート
      1. 9.1.1 関連資料
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 商標
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10改訂履歴
  12. 11メカニカル、パッケージ、および注文情報

ステッパ ドライバの代表的なアプリケーション

次の回路図は、ステッパ モータを駆動する DRV8262 を示しています。

DRV8262 1 つのステッパ モータの駆動図 7-4 1 つのステッパ モータの駆動

フルスケール電流 (IFS) は、どちらかの巻線によって駆動される最大電流です。この値は、VREF 電圧と、IPROPI ピンとグランド間に接続されている抵抗によって異なります。

IFS × AIPROPI = VVREF / RIPROPI

VREF ピンの最大許容電圧は 3.3V です。DVDD は分割抵抗を使用して VREF を供給できます。

注:

モータを飽和させないように、IFS 電流は 式 6 にも従う必要があります。VM はモーターの電源電圧、RL はモーターの巻線の抵抗です。

式 6. DRV8262

目標モーター速度が高すぎると、モーターは回転しません。モーターが目標速度に対応できることを確認してください。

モーターの目標の速度 (V)、マイクロステッピング レベル (nm)、モーターのフルステップ角度 (θstep) を求めるには、入力波形の周波数を次のように決定します。

式 7. DRV8262

θstep は、ステッパ モーターのデータシート、またはモーター本体に記載されています。

周波数 ƒstep は、DRV8262 の入力の変化の周波数を示します。次の図では、1/ ƒstep = tSTEP となります。目標速度 120rpm、1/2 ステップでの計算例を、式 8 に示します。

式 8. DRV8262
DRV8262 1/2 ステッピング動作の例図 7-5 1/2 ステッピング動作の例

IPROPI ピンは、ドライブモードおよびスローディケイ(ハイサイド再循環)モード中のステッパ モーターのコイル A とコイル B の電流に対応する、各 H ブリッジの電流を出力します。