SPRADM3 March   2025 AWR1243 , AWR1642 , AWR1843 , AWR1843AOP , AWR2243 , AWR2544 , AWR2944 , AWR2944P , AWR6443 , AWR6843 , AWR6843AOP , AWRL1432 , AWRL6432 , IWR2944

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Terminology
  6. 3Discover Phase
    1. 3.1 What is a mmWave Sensor?
    2. 3.2 Why are mmWave Sensors Required in Automotive and ADAS?
    3. 3.3 Understanding Frequency Choice and Regulations
    4. 3.4 What is Imaging Radar?
    5. 3.5 How to Check TI Portfolio and Select Product?
      1. 3.5.1 Selecting a Part Based on Application
  7. 4Evaluation Phase
    1. 4.1 Hardware
      1. 4.1.1 EVM
      2. 4.1.2 DCA1000EVM
    2. 4.2 Software and Tools
      1. 4.2.1 Software Development Kits (SDK)
      2. 4.2.2 Radar Toolbox
      3. 4.2.3 mmWave DFP
      4. 4.2.4 mmWave Sensing Estimator
      5. 4.2.5 mmWave Studio
      6. 4.2.6 Code Composer Studio™
      7. 4.2.7 UniFlash
    3. 4.3 Find and Select the Right Partner Resource
  8. 5Development Phase
    1. 5.1 Primary and Secondary Bootloader
    2. 5.2 SDK
    3. 5.3 Compilers
    4. 5.4 RF Front-end Configurations and mmWave DFP
    5. 5.5 Safety Aspects
    6. 5.6 Security Aspects
    7. 5.7 Signal Processing Chain
      1. 5.7.1 How Can FMCW Radars Be Used?
    8. 5.8 MCAL and Autosar
    9. 5.9 Hardware Module Design
  9. 6Production Phase
    1. 6.1 Calibration
    2. 6.2 mmWave Production Testing
    3. 6.3 FCC and RED Compliance
    4. 6.4 Functional Safety Certification
    5. 6.5 Quality Process and Customer Returns
      1. 6.5.1 Customer Return Process
      2. 6.5.2 Reference
    6. 6.6 OTP KeyWriter
  10. 7Summary
  11. 8References

mmWave Studio

mmWave studio is a stand-alone Windows® GUI that provides the ability to configure and control mmWave sensor modules and collect analog-to-digital (ADC) data for offline analysis. ADC data capture is intended to enable evaluation and characterization of radio-frequency (RF) performance, and PC development of signal-processing algorithms. MMWAVE-STUDIO provides the capability to evaluate and prototype chirp designs and experiment with advanced features of our radar devices. MMWAVE-STUDIO is intended for advanced users collecting ADC data directly and for fine-tuning low-level chirp parameters. This is not needed for typical evaluation of the radar demos. MMWAVE-STUDIO provides basic post-processing and visualization of ADC data, and post-processing examples based on MATLAB®, which can be used as getting-started reference.

TI Reference Collaterals

  • MMWAVE-STUDIO directs to the MMWAVE-STUDIO product page. All the resources can be found on this page.
Note: MMWAVE-STUDIO connects directly to our sensor modules and requires the DCA1000EVM for streaming of ADC data to PC for capture. This combination is highly recommended by TI to be used by all users to capture raw ADC data and perform various post processing algorithms on the data.