SBASB22 December   2025 ADS9324

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Timing Diagrams
  7. Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Analog Inputs
      2. 7.3.2  Input Clamp Protection Circuit
      3. 7.3.3  Analog Input Impedance
      4. 7.3.4  Programmable Gain Amplifier (PGA)
      5. 7.3.5  ADC Transfer Function
      6. 7.3.6  Reference
      7. 7.3.7  Open Wire Safe Mode
      8. 7.3.8  System Offset Calibration
      9. 7.3.9  System Gain Calibration
      10. 7.3.10 ADC Gain and Offset Error Calibration
      11. 7.3.11 Digital Filter
        1. 7.3.11.1 System Phase Calibration
        2. 7.3.11.2 Block Average Filter
        3. 7.3.11.3 Moving Average Filter
        4. 7.3.11.4 Low-Pass FIR Filter
      12. 7.3.12 Digital Window Comparator
      13. 7.3.13 Alarm Modes
      14. 7.3.14 Data Interface
        1. 7.3.14.1 ADC Channel Modes
        2. 7.3.14.2 Daisy Chain
        3. 7.3.14.3 Diagnostic Flags
        4. 7.3.14.4 ADC Output Data Randomizer
        5. 7.3.14.5 Test Patterns for Data Interface
        6. 7.3.14.6 Digital Output Drive Strength Control
        7. 7.3.14.7 Digital Output Delay Adjustment
    4. 7.4 Device Functional Modes
      1. 7.4.1 Reset
      2. 7.4.2 Normal Operation
      3. 7.4.3 Standby Mode
    5. 7.5 Programming
      1. 7.5.1 Register Write Operation
      2. 7.5.2 Register Read Operation
      3. 7.5.3 Initialization Example - Single Lane Mode on SDOUT
  9. Register Maps
    1. 8.1 ADS93xx Common Registers
    2. 8.2 AIN1 - AIN8 Channel Registers
    3. 8.3 AIN9 - AIN16 Channel Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 16-Channel, Data Acquisition System (DAQ) for Power Automation
        1. 9.2.1.1 Application Curve
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Mechanical Data

Analog Input Impedance

Each analog input channel in the device presents an input resistance of 1MΩ on both AINnP and AINnM pins. The input resistance for each channel is independent of either the input signal frequency, the configured range of the ADC, or the oversampling mode. The primary advantage of such high-impedance inputs is the ease of driving the ADC inputs without requiring driving amplifiers with low output impedance. Bipolar, high-voltage power supplies are not required in the system because this ADC does not require any high-voltage, front-end drivers. In most applications, the signal sources or sensor outputs can be directly connected to the ADC input, thus significantly simplifying the design of the signal chain.

To maintain the dc accuracy of the system, matching the external source impedance on the AINnP input pin with an equivalent resistance on the AINnM pin is recommended (see Figure 7-3). This matching helps to cancel any additional offset error contributed by the external resistance.