SLAA649G October   2014  – August 2021 MSP430F2001 , MSP430F2002 , MSP430F2003 , MSP430F2011 , MSP430F2012 , MSP430F2013 , MSP430F2013-EP , MSP430F2101 , MSP430F2111 , MSP430F2112 , MSP430F2121 , MSP430F2122 , MSP430F2131 , MSP430F2132 , MSP430F2232 , MSP430F2234 , MSP430F2252 , MSP430F2254 , MSP430F2272 , MSP430F2274 , MSP430F2274-EP , MSP430F233 , MSP430F2330 , MSP430F235 , MSP430F2350 , MSP430F2370 , MSP430F2410 , MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F247 , MSP430F2471 , MSP430F248 , MSP430F2481 , MSP430F249 , MSP430F249-EP , MSP430F2491 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619 , MSP430F2619S-HT , MSP430FR2032 , MSP430FR2033 , MSP430FR2110 , MSP430FR2111 , MSP430FR2153 , MSP430FR2155 , MSP430FR2310 , MSP430FR2311 , MSP430FR2353 , MSP430FR2355 , MSP430FR2433 , MSP430FR2475 , MSP430FR2476 , MSP430FR2532 , MSP430FR2533 , MSP430FR2632 , MSP430FR2633 , MSP430FR2672 , MSP430FR2673 , MSP430FR2675 , MSP430FR2676 , MSP430FR4131 , MSP430FR4132 , MSP430FR4133 , MSP430G2001 , MSP430G2101 , MSP430G2102 , MSP430G2111 , MSP430G2112 , MSP430G2121 , MSP430G2131 , MSP430G2132 , MSP430G2152 , MSP430G2153 , MSP430G2201 , MSP430G2202 , MSP430G2203 , MSP430G2210 , MSP430G2211 , MSP430G2212 , MSP430G2213 , MSP430G2221 , MSP430G2230 , MSP430G2230-EP , MSP430G2231 , MSP430G2231-EP , MSP430G2232 , MSP430G2233 , MSP430G2252 , MSP430G2253 , MSP430G2302 , MSP430G2302-EP , MSP430G2303 , MSP430G2312 , MSP430G2313 , MSP430G2332 , MSP430G2332-EP , MSP430G2333 , MSP430G2352 , MSP430G2353 , MSP430G2402 , MSP430G2403 , MSP430G2412 , MSP430G2413 , MSP430G2432 , MSP430G2433 , MSP430G2444 , MSP430G2452 , MSP430G2453 , MSP430G2513 , MSP430G2533 , MSP430G2544 , MSP430G2553 , MSP430G2744 , MSP430G2755 , MSP430G2855 , MSP430G2955 , MSP430I2020 , MSP430I2021 , MSP430I2030 , MSP430I2031 , MSP430I2040 , MSP430I2041

 

  1.   Trademarks
  2. Introduction
  3. Comparison of MSP430FR4xx and MSP430FR2xx Devices
  4. In-System Programming of Nonvolatile Memory
    1. 3.1 Ferroelectric RAM (FRAM) Overview
    2. 3.2 FRAM Cell
    3. 3.3 Protecting FRAM Using the Memory Write Protection Bit
    4. 3.4 FRAM Memory Wait States
    5. 3.5 Bootloader (BSL)
    6. 3.6 JTAG and Security
    7. 3.7 Production Programming
  5. Hardware Migration Considerations
  6. Device Calibration Information
  7. Important Device Specifications
  8. Core Architecture Considerations
    1. 7.1 Power Management Module (PMM)
      1. 7.1.1 Core LDO and LPM3.5 LDO
      2. 7.1.2 SVS
      3. 7.1.3 VREF
      4. 7.1.4 Debug in Low-Power Mode
    2. 7.2 Clock System
      1. 7.2.1 DCO Frequencies
      2. 7.2.2 FLL, REFO, and DCO Tap
      3. 7.2.3 FRAM Access at 16 MHz, ADC Clock, and Clocks-on-Demand
    3. 7.3 Operating Modes, Wake-up Times, and Reset
      1. 7.3.1 LPMx.5
      2. 7.3.2 Reset
        1. 7.3.2.1 Behavior of POR and BOR
        2. 7.3.2.2 Reset Generation
        3. 7.3.2.3 Determining the Cause of Reset
    4. 7.4 Interrupt Vectors
    5. 7.5 FRAM and the FRAM Controller
      1. 7.5.1 Flash and FRAM Overview Comparison
      2. 7.5.2 Cache Architecture
  9. Peripheral Considerations
    1. 8.1  Watchdog Timer
    2. 8.2  Ports
      1. 8.2.1 Digital Input/Output
      2. 8.2.2 Capacitive Touch I/O
    3. 8.3  Analog-to-Digital Converters
      1. 8.3.1 ADC10 to ADC
    4. 8.4  Communication Modules
      1. 8.4.1 USI to eUSCI
      2. 8.4.2 USCI to eUSCI
    5. 8.5  Timer and IR Modulation Logic
    6. 8.6  Backup Memory
    7. 8.7  Hardware Multiplier (MPY32)
    8. 8.8  RTC Counter
    9. 8.9  Interrupt Compare Controller (ICC)
    10. 8.10 LCD
    11. 8.11 Smart Analog Combo (SAC)
    12. 8.12 Comparator
  10. ROM Libraries
  11. 10Conclusion
  12. 11References
  13. 12Revision History

SVS

Because supply voltage supervision (SVS) is an important aspect of providing a stable supply or a notification in case of power failure, the FR4xx provides a high-side supply voltage supervision (SVSH) block. The SVSH supervises the external chip supply (DVCC), and the PMM internally supervises the low-side supply to the core.

In FR4xx devices, the SVS threshold tracks directly with the device minimum supply of 1.8 V, and there is no need to program SVS high-side levels as in the F2xx family (in which the SVS feature is available on selected devices only). Also, the SVSH block in the FR4xx is highly simplified. It is on by default at power-up and stays on. It can trigger a BOR reset when the supply falls below the SVS level. It can be turned off in LPM3, LPM4, and LPMx.5 modes by setting SVSHE = 0, if required.