SLAA649G October   2014  – August 2021 MSP430F2001 , MSP430F2002 , MSP430F2003 , MSP430F2011 , MSP430F2012 , MSP430F2013 , MSP430F2013-EP , MSP430F2101 , MSP430F2111 , MSP430F2112 , MSP430F2121 , MSP430F2122 , MSP430F2131 , MSP430F2132 , MSP430F2232 , MSP430F2234 , MSP430F2252 , MSP430F2254 , MSP430F2272 , MSP430F2274 , MSP430F2274-EP , MSP430F233 , MSP430F2330 , MSP430F235 , MSP430F2350 , MSP430F2370 , MSP430F2410 , MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F247 , MSP430F2471 , MSP430F248 , MSP430F2481 , MSP430F249 , MSP430F249-EP , MSP430F2491 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619 , MSP430F2619S-HT , MSP430FR2032 , MSP430FR2033 , MSP430FR2110 , MSP430FR2111 , MSP430FR2153 , MSP430FR2155 , MSP430FR2310 , MSP430FR2311 , MSP430FR2353 , MSP430FR2355 , MSP430FR2433 , MSP430FR2475 , MSP430FR2476 , MSP430FR2532 , MSP430FR2533 , MSP430FR2632 , MSP430FR2633 , MSP430FR2672 , MSP430FR2673 , MSP430FR2675 , MSP430FR2676 , MSP430FR4131 , MSP430FR4132 , MSP430FR4133 , MSP430G2001 , MSP430G2101 , MSP430G2102 , MSP430G2111 , MSP430G2112 , MSP430G2121 , MSP430G2131 , MSP430G2132 , MSP430G2152 , MSP430G2153 , MSP430G2201 , MSP430G2202 , MSP430G2203 , MSP430G2210 , MSP430G2211 , MSP430G2212 , MSP430G2213 , MSP430G2221 , MSP430G2230 , MSP430G2230-EP , MSP430G2231 , MSP430G2231-EP , MSP430G2232 , MSP430G2233 , MSP430G2252 , MSP430G2253 , MSP430G2302 , MSP430G2302-EP , MSP430G2303 , MSP430G2312 , MSP430G2313 , MSP430G2332 , MSP430G2332-EP , MSP430G2333 , MSP430G2352 , MSP430G2353 , MSP430G2402 , MSP430G2403 , MSP430G2412 , MSP430G2413 , MSP430G2432 , MSP430G2433 , MSP430G2444 , MSP430G2452 , MSP430G2453 , MSP430G2513 , MSP430G2533 , MSP430G2544 , MSP430G2553 , MSP430G2744 , MSP430G2755 , MSP430G2855 , MSP430G2955 , MSP430I2020 , MSP430I2021 , MSP430I2030 , MSP430I2031 , MSP430I2040 , MSP430I2041

 

  1.   Trademarks
  2. Introduction
  3. Comparison of MSP430FR4xx and MSP430FR2xx Devices
  4. In-System Programming of Nonvolatile Memory
    1. 3.1 Ferroelectric RAM (FRAM) Overview
    2. 3.2 FRAM Cell
    3. 3.3 Protecting FRAM Using the Memory Write Protection Bit
    4. 3.4 FRAM Memory Wait States
    5. 3.5 Bootloader (BSL)
    6. 3.6 JTAG and Security
    7. 3.7 Production Programming
  5. Hardware Migration Considerations
  6. Device Calibration Information
  7. Important Device Specifications
  8. Core Architecture Considerations
    1. 7.1 Power Management Module (PMM)
      1. 7.1.1 Core LDO and LPM3.5 LDO
      2. 7.1.2 SVS
      3. 7.1.3 VREF
      4. 7.1.4 Debug in Low-Power Mode
    2. 7.2 Clock System
      1. 7.2.1 DCO Frequencies
      2. 7.2.2 FLL, REFO, and DCO Tap
      3. 7.2.3 FRAM Access at 16 MHz, ADC Clock, and Clocks-on-Demand
    3. 7.3 Operating Modes, Wake-up Times, and Reset
      1. 7.3.1 LPMx.5
      2. 7.3.2 Reset
        1. 7.3.2.1 Behavior of POR and BOR
        2. 7.3.2.2 Reset Generation
        3. 7.3.2.3 Determining the Cause of Reset
    4. 7.4 Interrupt Vectors
    5. 7.5 FRAM and the FRAM Controller
      1. 7.5.1 Flash and FRAM Overview Comparison
      2. 7.5.2 Cache Architecture
  9. Peripheral Considerations
    1. 8.1  Watchdog Timer
    2. 8.2  Ports
      1. 8.2.1 Digital Input/Output
      2. 8.2.2 Capacitive Touch I/O
    3. 8.3  Analog-to-Digital Converters
      1. 8.3.1 ADC10 to ADC
    4. 8.4  Communication Modules
      1. 8.4.1 USI to eUSCI
      2. 8.4.2 USCI to eUSCI
    5. 8.5  Timer and IR Modulation Logic
    6. 8.6  Backup Memory
    7. 8.7  Hardware Multiplier (MPY32)
    8. 8.8  RTC Counter
    9. 8.9  Interrupt Compare Controller (ICC)
    10. 8.10 LCD
    11. 8.11 Smart Analog Combo (SAC)
    12. 8.12 Comparator
  10. ROM Libraries
  11. 10Conclusion
  12. 11References
  13. 12Revision History

Determining the Cause of Reset

In F2xx devices, a PUC can be triggered by multiple sources such as WDT timer expiration, WDT key violation, or flash key violation. To determine the cause of reset, it is necessary to investigate multiple registers because each reset source is tracked by different interrupt flags and registers.

In the FR4xx devices, all sources of reset are combined into one System Reset Vector (SYSRSTIV) register, and it is no longer necessary to read multiple registers to determine the cause of reset. The SYSRSTIV register is useful when debugging and lists all sources from all levels of reset (PUC, POR, and BOR). See the device-specific data sheet for a list of SYSRSTIV values for different reset sources.