Top
Capacitive-touch MCU with 16 I/O (64 sensors), 16-KB FRAM, 4-KB SRAM, 27 I/O and 12-bit ADC

MSP430FR2673

ACTIVE

Product details

Parameters

Features Advanced sensing, Real-Time Clock Non-volatile memory (kB) 16 RAM (KB) 4 ADC 12-bit SAR ADC: channels (#) 8 GPIO pins (#) 27 I2C 2 SPI 4 UART 2 Comparator channels (#) 4 Timers - 16-bit 5 Bootloader (BSL) I2C, UART Special I/O CapTIvate Touch I/O Operating temperature range (C) -40 to 105 Rating Catalog open-in-new Find other MSP430 ultra-low-power MCUs

Package | Pins | Size

VQFN (RHB) 32 25 mm² 5 x 5 open-in-new Find other MSP430 ultra-low-power MCUs

Features

  • CapTIvate™ technology – capacitive touch
    • Performance
      • Fast electrode scanning with four simultaneous scans
      • Support for high-resolution sliders with up to 1024 points
      • Proximity sensing
    • Reliability
      • Increased immunity to power line, RF, and other environmental noise
      • Built-in spread spectrum, automatic tuning, noise filtering, and debouncing algorithms
      • Enable reliable touch solutions with 10-V RMS common-mode noise, 4-kV electrical fast transients, and 15-kV electrostatic discharge, allowing for IEC‑61000-4-6, IEC-61000-4-4, and IEC‑61000-4-2 compliance
      • Reduced RF emissions to simplify electrical designs
      • Support for metal touch and water rejection designs
    • Flexibility
    • Low power
      • <0.9 µA/button in wake-on-touch mode, where capacitive measurement and touch detection is done by hardware state machine while CPU is asleep
      • Wake-on-touch state machine allows electrode scanning while CPU sleeps
      • Hardware acceleration for environmental compensation, filtering, and threshold detection
    • Ease of use
      • CapTIvate Design Center PC GUI lets engineers design and tune capacitive buttons in real time without having to write code
      • CapTIvate software library in ROM provides ample FRAM for customer application
  • Embedded microcontroller
    • 16-bit RISC architecture
    • Clock supports frequencies up to 16 MHz
    • Wide supply voltage range from 3.6 V down to 1.8 V (minimum supply voltage is restricted by SVS levels, see the SVS Specifications)
  • Optimized ultra-low-power modes
    • Active mode: 135 µA/MHz (Typical)
    • Standby: <5 µA wake-on-touch with four sensors
    • Shutdown (LPM4.5): 37 nA without SVS
  • Low-power ferroelectric RAM (FRAM)
    • Up to 64KB of nonvolatile memory
    • Built-in error correction code (ECC)
    • Configurable write protection
    • Unified memory of program, constants, and storage
    • 1015 write cycle endurance
    • Radiation resistant and nonmagnetic
  • Intelligent digital peripherals
    • Four 16-bit timers with three capture/compare registers each (Timer_A3)
    • One 16-bit timer with seven capture/compare registers (Timer_B7)
    • One 16-bit timer associated with CapTIvate technology
    • One 16-bit counter-only RTC
    • 16-bit cyclic redundancy check (CRC)
  • Enhanced serial communications with support for pin remap feature
    • Two eUSCI_A supports UART, IrDA, and SPI
    • Two eUSCI_B supports SPI and I2C
  • High-performance analog
    • One 12-bit analog-to-digital converter (ADC) with up to 12 channels
      • Internal shared reference (1.5, 2.0, or 2.5 V)
      • Sample-and-hold 200 ksps
    • One enhanced comparator (eCOMP)
      • Integrated 6-bit DAC as reference voltage
      • Programmable hysteresis
      • Configurable high-power and low-power modes
  • Clock system (CS)
    • On-chip 32-kHz RC oscillator (REFO) with 1 µA support
    • On-chip 16-MHz digitally controlled oscillator (DCO) with frequency-locked loop (FLL)
      • ±1% accuracy with on-chip reference at room temperature
    • On-chip very low-frequency 10-kHz oscillator (VLO)
    • On-chip high-frequency modulation oscillator (MODOSC)
    • External 32-kHz crystal oscillator (LFXT)
    • Programmable MCLK prescalar of 1 to 128
    • SMCLK derived from MCLK with programmable prescalar of 1, 2, 4, or 8
  • General input/output and pin functionality
    • 43 I/Os on LQFP-48 package
    • 43 interrupt pins on all GPIOs can wake MCU from low-power modes
  • Development tools and software
  • 16KB ROM library includes CapTIvate touch libraries and driver libraries
  • Family members (also see Device Comparison)
    • MSP430FR2676: 64KB of program FRAM, 512B of information FRAM, 8KB of RAM
      supports up to 16 self-capacitive and 64 mutual-capacitive sensors
    • MSP430FR2675: 32KB of program FRAM, 512B of information FRAM, 6KB of RAM
      supports up to 16 self-capacitive and 64 mutual-capacitive sensors
    • MSP430FR2673: 16KB of program FRAM, 512B of information FRAM, 4KB of RAM
      supports up to 16 self-capacitive and 64 mutual-capacitive sensors
    • MSP430FR2672: 8KB of program FRAM, 512B of information FRAM, 2KB of RAM
      supports up to 16 self-capacitive and 24 mutual-capacitive sensors
  • Package options
    • 48-pin: LQFP (PT)
    • 40-pin: VQFN (RHA)
    • 32-pin: VQFN (RHB)

All trademarks are the property of their respective owners.

open-in-new Find other MSP430 ultra-low-power MCUs

Description

The MSP430FR267x is an ultra-low-power MSP430™ microcontroller for capacitive touch sensing that feature CapTIvate touch technology for buttons, slides, wheel and proximity applications. MSP430 MCUs with CapTIvate technology provide the most integrated and autonomous capacitive-touch solution in the market with high reliability and noise immunity at the lowest power. TI’s capacitive touch technology supports concurrent self-capacitance and mutual-capacitance electrodes on the same design for maximum flexibility. MSP430 MCUs with CapTIvate technology operate through thick glass, plastic enclosures, metal, and wood with operation in harsh environments including wet, greasy, and dirty environments.

TI capacitive touch sensing MSP430 MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-CAPT-FR2633 CapTIvate Technology Development Kit. TI also provides free software including the CapTIvate Design Center, where engineers can quickly develop applications with an easy-to-use GUI and MSP430Ware™ software, and comprehensive documentation with the CapTIvate Technology Guide.

The TI MSP430 family of low-power microcontrollers consists of devices with different sets of peripherals targeted for various applications. The architecture, combined with extensive low-power modes, is optimized to achieve extended battery life in portable measurement applications. The MCU features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the MCU to wake up from low-power modes to active mode in less than 10 µs (typical).

For complete module descriptions, see the MSP430FR4xx and MSP430FR2xx Family User’s Guide.

open-in-new Find other MSP430 ultra-low-power MCUs
Download

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 15
Type Title Date
* Datasheet MSP430FR267x Capacitive Touch Sensing Mixed-Signal Microcontrollers datasheet (Rev. C) Dec. 12, 2019
* Errata MSP430FR2673 Device Errata Sheet Feb. 20, 2020
* User guide MSP430FR4xx and MSP430FR2xx Family User's Guide (Rev. I) Mar. 13, 2019
White paper Capacitive Sensing Technology, Products, and Applications May 19, 2020
Technical articles The capacitive touch trend is rising rapidly. Can you keep up? May 15, 2020
Application note Automating Capacitive Touch Sensor PCB Design Using OpenSCAD Scripts (Rev. B) Feb. 26, 2020
Application note MSP430 System-Level ESD Considerations (Rev. A) Jan. 13, 2020
Application note Designing With the MSP430FR4xx and MSP430FR2xx ADC Dec. 30, 2019
Application note MSP430 System ESD Troubleshooting Guide Dec. 13, 2019
Application note Capacitive Touch Design Flow for MSP430™ MCUs With CapTIvate™ Technology (Rev. B) Aug. 14, 2019
Application note Migrating from MSP430 F2xx and G2xx families to MSP430 FR4xx and FR2xx family (Rev. F) Mar. 26, 2019
Application note Migration from MSP430 FR58xx, FR59xx, and FR6xx to FR4xx and FR2xx (Rev. A) Mar. 26, 2019
Technical articles “Touching” the smart grid infrastructure space with capacitive sensing technology Mar. 31, 2016
Technical articles Don’t miss out on the top training videos of 2015 Dec. 16, 2015
Technical articles How fast is your 32-bit MCU? Jul. 15, 2015

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARD Download
Description

The CapTIvate™ button, slider, wheel, and proximity demonstration board is an evaluation platform for self-capacitance touch sensors in a variety of configurations. The sensor panel demonstrates low power design principles and showcases MSP430™ CapTIvate MCU's wake-on-proximity state (...)

Features
  • Interfaces to MSP430 CapTIvate ecosystem MCU boards, such as the CAPTIVATE-FR2633
  • 16 capacitive touch elements, including 8 buttons, one 3-element wheel, one 4-element slider, and one proximity sensor
  • Wake-on-proximity operation with 5µA average current
EVALUATION BOARD Download
Description

The MSP430FR2676 CapTIvate™ touch MCU board (CAPTIVATE-FR2676) is a simple evaluation board for evaluating capacitive touch and proximity sensors through the use of plug-in sensor boards (sold separately). 

The MCU board has a 20-pin female debug connector to debug the on-board MSP430FR2676 CapTIvate (...)

Features
  • Interfaces to CapTIvate ecosystem sensor panel boards such as the CAPTIVATE-BSWP
  • 16 capacitive touch enabled IOs available on the sensor panel connector
  • Limited BoosterPack module support
  • External power header that can be used to provide external power to the PCB
  • 3 on-board LEDS and 1 on-board push (...)
EVALUATION BOARD Download
Description

The MSP430™ CapTIvate™ isolation board (CAPTIVATE-ISO) is an add-on board for the CapTIvate Development Kits (MSP-CAPT-FR2633 or CAPTIVATE-FR2676) that allows a way to maintain Spy-by-Wire, I2C, and UART communication between the CAPTIVATE-PGMR and the CapTIvate MCU Board when the MCU Board is (...)

Features
  • Provides digital isolation for Spy-by-Wire, I2C, and UART
  • No shared power or ground
EVALUATION BOARD Download
19.99
Description
The MSP430 CapTIvate MCU Programmer is available standalone or as part of the MSP CapTIvate™ MCU Development Kit, a comprehensive, easy-to-use platform to evaluate MSP430FR2633 microcontroller with capacitive touch technology.  The programmer/debugger board can be used with the (...)
Features
  • Programmer board compatible with CapTIvate MCU boards
  • EnergyTrace Technology to measure power consumption with Code Composer Studio
  • CapTIvate programming header for interfacing with CapTIvate MCU boards
  • USB HID-Bridge communications interface allows easy debug data transfer between the target and a PC (...)
DEVELOPMENT KIT Download
Description

This MSP430™ CapTIvate™ demonstration board (CAPTIVATE-PHONE) is a simple evaluation platform for mutual capacitance capacitive touch sensors using a variety of configurations in a real-world application.  The sensor panel demonstrates how to matrix mutual capacitance touch sensors (...)

Features
  • Interfaces to CapTIvate ecosystem MCU boards
  • Implements 29 capactive touch elements using just 12 CapTIvate IOs
  • Contains 17 buttons, two 4-element sliders, one 3-element wheel, and one guard channel
  • Implements a guard channel for palm rejection
  • Provides haptic feedback using the TI DRV2605L haptic (...)

Software development

SOFTWARE DEVELOPMENT KIT (SDK) Download
MSP430Ware for MSP Microcontrollers
MSPWARE MSP430Ware is a collection of resources that help users to effectively create and build MSP430 code. These resources support ALL MSP430 microcontrollers (MCUs). As one user mentioned, “It’s essentially everything developers need to become MSP430 microcontroller experts!”

This complete collection of (...)

Features
  • Collection of MSP design resources
  • Available within CCS, as a standalone executable, or as part of TI’s new Cloud-based tools
  • Auto-updates through the web
  • Sleek & intuitive GUI for browsing content
  • Features the MSP Driver Library
  • Automatic filtering of content using a unique 2-pane view
DRIVER OR LIBRARY Download
Fixed Point Math Library for MSP
MSP-IQMATHLIB The Texas Instruments® MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in (...)
Features
  • Optimized fixed point functions - reduce development time and enable developers to focus on optimizing application code
  • Up to 100x higher performance when executing common fixed point scalar math functions in CCS – this means the MSP microcontroller can remain in low power modes longer than (...)
DRIVER OR LIBRARY Download
Bootloader (BSL) for MSP low-power microcontrollers
MSPBSL The bootloader (BSL) on MSP430™ microcontrollers (MCUs) lets users communicate with embedded memory in the MSP MCUs during the prototyping phase, final production, and in service. This is done through standard interfaces such as UART, I2C, SPI, and USB. Both the programmable memory (...)
IDE, CONFIGURATION, COMPILER OR DEBUGGER Download
Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers
CCSTUDIO-MSP

Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor (...)

SOFTWARE PROGRAMMING TOOL Download
MSP MCU Programmer and Debugger
MSP-FET The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to quickly begin development on MSP low-power microcontrollers (MCU).

It supports programming and real-time debugging over both JTAG and SBW interfaces. Furthermore, the MSP-FET also provides a (...)

115
Features
  • USB debugging interface to connect any MSP430 MCU to a computer for real-time, in-system programming and debugging
  • Enables EnergyTrace™ technology for energy measurement and debugging on all MSP430 and MSP432 devices in the Code Composer Studio and IAR Embedded Workbench development environments
  • (...)
SOFTWARE PROGRAMMING TOOL Download
UniFlash stand-alone flash tool for microcontrollers, Sitara™; processors and SimpleLink™
UNIFLASH Supported devices: CC13xx, CC25xx, CC26xx, CC3x20, CC3x30, CC3x35, Tiva, C2000, MSP43x, Hercules, PGA9xx, IWR12xx, IWR14xx, IWR16xx, IWR18xx , IWR68xx, AWR12xx, AWR14xx, AWR16xx, AWR18xx.  Command line only: AM335x, AM437x, AM571x, AM572x, AM574x, AM65XX, K2G

CCS Uniflash is a standalone tool used to (...)

SUPPORT SOFTWARE Download
SLAC781B.ZIP (412 KB)

CAD/CAE symbols

Package Pins Download
VQFN (RHB) 32 View options

Ordering & quality

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos