SLLSFW3A April   2025  – June 2025 SN55LVTA4-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Unused Enable Pins
      2. 7.3.2 Driver Disabled Output
      3. 7.3.3 Driver Equivalent Schematics
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Typical Application
        1. 8.1.1.1 Detailed Design Procedure
          1. 8.1.1.1.1 Interconnecting Media
        2. 8.1.1.2 Design Requirements
        3. 8.1.1.3 Application Curve
      2. 8.1.2 Cold Sparing
      3. 8.1.3 Power Supply Recommendations
        1. 8.1.3.1 Supply Bypass Capacitance
      4. 8.1.4 Layout
        1. 8.1.4.1 Layout Guidelines
          1. 8.1.4.1.1 Microstrip vs. Stripline Topologies
          2. 8.1.4.1.2 Dielectric Type and Board Construction
          3. 8.1.4.1.3 Recommended Stack Layout
          4. 8.1.4.1.4 Separation Between Traces
          5. 8.1.4.1.5 Crosstalk and Ground Bounce Minimization
        2. 8.1.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Related Documentation
  11. 10Receiving Notification of Documentation Updates
  12. 11Support Resources
  13. 12Trademarks
  14. 13Electrostatic Discharge Caution
  15. 14Glossary
  16. 15Revision History
  17. 16Mechanical, Packaging, and Orderable Information

Cold Sparing

Systems using cold sparing have a redundant device electrically connected without power supplied. To support this configuration, the spare must present a high-input impedance to the system so that it does not draw appreciable power. In cold sparing, voltage may be applied to an I/O before and during power up of a device. When the device is powered off, VCC must be clamped to ground and the I/O voltages applied must be within the specified recommended operating conditions.