SNAS512K September   2011  – October 2025 LMK00301

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Differential Voltage Measurement Terminology
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 VCC and VCCO Power Supplies
    4. 8.4 Device Functional Modes
      1. 8.4.1 Clock Inputs
      2. 8.4.2 Clock Outputs
        1. 8.4.2.1 Reference Output
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Driving the Clock Inputs
        2. 9.2.1.2 Crystal Interface
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Termination and Use of Clock Drivers
          1. 9.2.2.1.1 Termination for DC Coupled Differential Operation
          2. 9.2.2.1.2 Termination for AC Coupled Differential Operation
          3. 9.2.2.1.3 Termination for Single-Ended Operation
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power Supply Sequencing
      2. 9.3.2 Current Consumption and Power Dissipation Calculations
        1. 9.3.2.1 Power Dissipation Example #1: Separate VCC and VCCO Supplies with Unused Outputs
        2. 9.3.2.2 Power Dissipation Example #2: Worst-Case Dissipation
      3. 9.3.3 Power Supply Bypassing
        1. 9.3.3.1 Power Supply Ripple Rejection
      4. 9.3.4 Thermal Management
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Termination and Use of Clock Drivers

When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:

  • Transmission line theory must be followed for good impedance matching to prevent reflections.
  • Clock drivers must be presented with the proper loads.
    • LVDS outputs are current drivers and require a closed current loop.
    • HCSL drivers are switched current outputs and require a DC path to ground through 50Ω termination.
    • LVPECL outputs are open emitter and require a DC path to ground.
  • Receivers must be presented with a signal biased to the specified DC bias level (common-mode voltage) for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage level; in this case, the signal must normally be AC coupled.

Driving a non-LVPECL or non-LVDS receiver with a LVDS or LVPECL driver is possible as long as the above guidelines are followed. Check the data sheet of the receiver or input being driven to determine the best termination and coupling method to verify that the receiver is biased at the optimum DC voltage (common-mode voltage).