SNIS237A December   2024  – April 2025 TMP118

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Two-Wire Interface Timing
    7. 6.7 Timing Diagram
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Digital Temperature Output
      2. 7.3.2 Averaging
      3. 7.3.3 Temperature Comparator and Hysteresis
      4. 7.3.4 Strain Tolerance
      5. 7.3.5 NIST Traceability
    4. 7.4 Device Functional Modes
      1. 7.4.1 Continuous Conversion Mode
      2. 7.4.2 One-Shot Mode (OS)
    5. 7.5 Programming
      1. 7.5.1 I2C and SMBus Interface
        1. 7.5.1.1 Serial Interface
          1. 7.5.1.1.1 Bus Overview
          2. 7.5.1.1.2 Device Address
          3. 7.5.1.1.3 Writing and Reading Operation
            1. 7.5.1.1.3.1 Writes
            2. 7.5.1.1.3.2 Reads
          4. 7.5.1.1.4 General-Call Reset Function
          5. 7.5.1.1.5 Timeout Function
          6. 7.5.1.1.6 Coexistence on I3C Mixed Bus
  9. Device Registers
    1. 8.1 Register Map
      1. 8.1.1 Temp_Result Register (address = 00h) [reset = 0000h]
      2. 8.1.2 Configuration Register (address = 01h) [reset = 60B0h]
      3. 8.1.3 TLow_Limit Register (address = 02h) [reset = 2580h]
      4. 8.1.4 THigh_Limit Register (address = 03h) [reset = 2800h]
      5. 8.1.5 Device ID Register (Address = 0Bh) [reset = 1180h]
      6. 8.1.6 Unique_ID0 Register (Address = 0Ch) [reset = xxxxh]
      7. 8.1.7 Unique_ID1 Register (Address = 0Dh) [reset = xxxxh]
      8. 8.1.8 Unique_ID2 Register (Address = 0Eh) [reset = xxxxh]
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Separate I2C Pullup and Supply Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
      2. 9.2.2 Equal I2C Pullup and Supply Voltage Application
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Description

The TMP118 is an ultra-small, ultra-thin digital temperature sensor in a PicoStar™ package, with an area of 0.336mm2, and a maximum height of 240µm. The TMP118 has 16-bit resolution with an LSB of 7.8125m°C, achieving ±0.1°C (max accuracy) from 20°C to 50°C with no additional calibration, which helps meet the system level ASTM E1112 and ISO 80601 accuracy standard for medical-grade electronic thermometers.

Designed for low-power operation, the TMP118 operates from supply voltages as low as 1.4V (up to 5.5V) and draws 55µA when actively converting (approximately 1.4µA at a 1Hz sample rate) and 65nA in shutdown mode, enabling on-demand measurements while maximizing battery life in portable or wearable devices. The TMP118 has an interface that is I2C- and SMBus-compatible and has programmable alert flag functionality. The sensor also supports logic levels down to 1.2V without requiring a level shifter, allowing direct interfacing with low-voltage MCUs.

Additionally, each TMP118includes a unique device ID for NIST traceability. All units are factory-tested with NIST-traceable equipment calibrated to ISO/IEC 17025 accredited standards.

Package Information
PART NUMBER(1)PACKAGEPACKAGE SIZE(2)
TMP118PICOSTAR (4)0.61mm × 0.55mm
For more information, see Section 12.
The package size (length × width) is a nominal value and includes pins, where applicable.
TMP118 TMP118 Temperature Accuracy (1.8V supply)TMP118 Temperature Accuracy (1.8V supply)
TMP118 Simplified SchematicSimplified Schematic