SNIS237A December   2024  – April 2025 TMP118

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Two-Wire Interface Timing
    7. 6.7 Timing Diagram
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Digital Temperature Output
      2. 7.3.2 Averaging
      3. 7.3.3 Temperature Comparator and Hysteresis
      4. 7.3.4 Strain Tolerance
      5. 7.3.5 NIST Traceability
    4. 7.4 Device Functional Modes
      1. 7.4.1 Continuous Conversion Mode
      2. 7.4.2 One-Shot Mode (OS)
    5. 7.5 Programming
      1. 7.5.1 I2C and SMBus Interface
        1. 7.5.1.1 Serial Interface
          1. 7.5.1.1.1 Bus Overview
          2. 7.5.1.1.2 Device Address
          3. 7.5.1.1.3 Writing and Reading Operation
            1. 7.5.1.1.3.1 Writes
            2. 7.5.1.1.3.2 Reads
          4. 7.5.1.1.4 General-Call Reset Function
          5. 7.5.1.1.5 Timeout Function
          6. 7.5.1.1.6 Coexistence on I3C Mixed Bus
  9. Device Registers
    1. 8.1 Register Map
      1. 8.1.1 Temp_Result Register (address = 00h) [reset = 0000h]
      2. 8.1.2 Configuration Register (address = 01h) [reset = 60B0h]
      3. 8.1.3 TLow_Limit Register (address = 02h) [reset = 2580h]
      4. 8.1.4 THigh_Limit Register (address = 03h) [reset = 2800h]
      5. 8.1.5 Device ID Register (Address = 0Bh) [reset = 1180h]
      6. 8.1.6 Unique_ID0 Register (Address = 0Ch) [reset = xxxxh]
      7. 8.1.7 Unique_ID1 Register (Address = 0Dh) [reset = xxxxh]
      8. 8.1.8 Unique_ID2 Register (Address = 0Eh) [reset = xxxxh]
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Separate I2C Pullup and Supply Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
      2. 9.2.2 Equal I2C Pullup and Supply Voltage Application
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

One-Shot Mode (OS)

The TMP118 features a one-shot temperature-measurement mode. When the device is in shutdown mode (bit Shutdown= 1b in the Configuration Register), writing 1b to both the OS and Shutdown bits in the Configuration Register begins a single temperature conversion, which typically takes 12ms. During the conversion, the OS bit reads 0b. The device returns to the shutdown state at the completion of the single conversion. After the conversion, the OS bit reads 1b. To trigger another one-short temperature conversion, write 1b to both the OS and Shutdown bits again in the Configuration Register. This feature is useful for reducing power consumption in the device when continuous temperature monitoring is not required.

In Continuous Conversion Mode (bit Shutdown= 0b in the Configuration Register), the OS bit always reads 0b.

TMP118 One-Shot Timing Diagram Figure 7-12 One-Shot Timing Diagram