SNVSCU9A May   2025  – November 2025 TPS7H4012-SEP , TPS7H4013-SEP

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Device Options Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Quality Conformance Inspection
    7. 7.7 Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 VIN and Power VIN Pins (VIN and PVIN)
      2. 9.3.2 Voltage Reference
      3. 9.3.3 Voltage Sensing and Setting VOUT
        1. 9.3.3.1 Minimum Output Voltage
        2. 9.3.3.2 Maximum Output Voltage
      4. 9.3.4 Enable
      5. 9.3.5 Power Good (PWRGD)
      6. 9.3.6 Adjustable Switching Frequency and Synchronization
        1. 9.3.6.1 Internal Clock Mode
        2. 9.3.6.2 External Clock Mode
      7. 9.3.7 Turn-On Behavior
        1. 9.3.7.1 Soft-Start (SS_TR)
        2. 9.3.7.2 Safe Start-Up Into Prebiased Outputs
        3. 9.3.7.3 Tracking and Sequencing
      8. 9.3.8 Protection Modes
        1. 9.3.8.1 Overcurrent Protection
          1. 9.3.8.1.1 High-Side 1 Overcurrent Protection (HS1)
          2. 9.3.8.1.2 High-Side 2 Overcurrent Protection (HS2)
          3. 9.3.8.1.3 COMP Shutdown
          4. 9.3.8.1.4 Low-Side Overcurrent Sinking Protection
        2. 9.3.8.2 Output Overvoltage Protection (OVP)
        3. 9.3.8.3 Thermal Shutdown
      9. 9.3.9 Error Amplifier and Loop Response
        1. 9.3.9.1 Error Amplifier
        2. 9.3.9.2 Power Stage Transconductance
        3. 9.3.9.3 Slope Compensation
        4. 9.3.9.4 Frequency Compensation
    4. 9.4 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1  Operating Frequency
        2. 10.2.2.2  Output Inductor Selection
        3. 10.2.2.3  Output Capacitor Selection
        4. 10.2.2.4  Input Capacitor Selection
        5. 10.2.2.5  Soft-Start Capacitor Selection
        6. 10.2.2.6  Rising VIN Set Point (Configurable UVLO)
        7. 10.2.2.7  Output Voltage Feedback Resistor Selection
        8. 10.2.2.8  Output Voltage Accuracy
        9. 10.2.2.9  Slope Compensation Requirements
        10. 10.2.2.10 Compensation Component Selection
        11. 10.2.2.11 Schottky Diode
      3. 10.2.3 Application Curve
      4. 10.2.4 Inverting Buck-Boost
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1.     82

Inverting Buck-Boost

The TPS7H401x can be configured as an inverting buck-boost in order to create a negative output voltage as shown in Figure 10-4.

TPS7H4012-SEP TPS7H4013-SEP Simplified Schematic of
                    Inverting Buck-Boost Figure 10-4 Simplified Schematic of Inverting Buck-Boost

Additional considerations for designing an inverting buck-boost are described in the application note, Working With Inverting Buck-Boost Converters. While many details and equations are provided within the application note, a few considerations for the TPS7H401x are as follows:

  • Ensure the recommended maximum input voltage of 14V is followed. This means VIN + |VOUT| ≤ 14V. For example, an inverting buck-boost configured from 5V to –5V is acceptable (10V differential) but 12V to –12V would not be acceptable (24V differential).
  • Be sure the current limit supports the application . The average inductor current for an inverting buck-boost is greater than the load current. This may result in higher peak currents than expected when compared to a buck converter. Additionally, this means that the average inductor current must be kept lower than the TPS7H4012 recommended maximum of 6A and TPS7H4013 maximum of 3A.
  • CIO in the Figure 10-4 is the standard input capacitor that would be utilized in a buck converter. CIN is an input capacitor with respect to system ground which provides a low impedance path at the regulator input.
  • Be sure that device logic input pins such as EN never exceed the recommended maximum rating of 7V. For example, if EN was driven to 5V from an external source and the inverting buck-boost is configured for a –5V output, this would apply 10V to EN (with respect to the device GND pin) which would exceed the rating. Take care with selecting the input voltage signals to avoid this condition. Alternatively, logic shift the signals so they are referenced with respect to -VOUT (which is the device GND pin).