SPRAA85E November   2005  – December 2017 SM320F2812 , SM320F2812-EP , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F2801 , TMS320F2801-Q1 , TMS320F2802 , TMS320F2802-Q1 , TMS320F28044 , TMS320F2806 , TMS320F2806-Q1 , TMS320F28062 , TMS320F28062-Q1 , TMS320F28062F , TMS320F28062F-Q1 , TMS320F28063 , TMS320F28064 , TMS320F28065 , TMS320F28066 , TMS320F28066-Q1 , TMS320F28067 , TMS320F28067-Q1 , TMS320F28068F , TMS320F28068M , TMS320F28069 , TMS320F28069-Q1 , TMS320F28069F , TMS320F28069F-Q1 , TMS320F28069M , TMS320F28069M-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F2808 , TMS320F2808-Q1 , TMS320F2809 , TMS320F2810 , TMS320F2810-Q1 , TMS320F2811 , TMS320F2811-Q1 , TMS320F2812 , TMS320F2812-Q1 , TMS320F28232 , TMS320F28232-Q1 , TMS320F28234 , TMS320F28234-Q1 , TMS320F28235 , TMS320F28235-Q1 , TMS320F28332 , TMS320F28333 , TMS320F28334 , TMS320F28335 , TMS320F28335-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320R2811 , TMS320R2812

 

  1.   Programming TMS320x28xx and TMS320x28xxx Peripherals in C/C++
    1.     Trademarks
    2. Introduction
    3. Traditional #define Approach
      1.      Example 1. Traditional #define Macros
      2.      Example 2. Accessing Registers Using #define Macros
    4. Bit Field and Register-File Structure Approach
      1. 3.1 Defining A Register-File Structure
        1.       Example 3. SCI Register-File Structure Definition
        2.       Example 4. SCI Register-File Structure Variables
      2. 3.2 Using the DATA_SECTION Pragma to Map a Register-File Structure to Memory
        1.       Example 5. Assigning Variables to Data Sections
        2.       Example 6. Mapping Data Sections to Register Memory Locations
        3.       Example 7. Accessing a Member of the SCI Register-File Structure
      3. 3.3 Adding Bit-Field Definitions
        1.       Example 8. SCI Control Registers Defined Using Bit Fields
      4. 3.4 Using Unions
        1.       Example 9. Union Definition to Provide Access to Bit Fields and the Whole Register
        2.       Example 10. SCI Register-File Structure Using Unions
        3.       Example 11. Accessing Bit Fields in C/C++
    5. Bit Field and Register-File Structure Advantages
    6. Code Size and Performance Using Bit Fields
      1.      Example 12. TMS320x280x PCLKCR0 Bit-Field Definition
      2.      Example 13. Assembly Code Generated by Bit Field Accesses
      3.      Example 14. Optimization Using the .all Union Member
      4.      Example 15. Optimization Using a Shadow Register
    7. Read-Modify-Write Considerations When Using Bit Fields
      1.      Example 16. A Few Read-Modify-Write Operations
      2. 6.1 Registers That Hardware Can Modify During Read-Modify-Write Operations
        1. 6.1.1 PIEIFRx Registers
          1.        Example 17. Clearing PIEIFRx (x = 1, 2...12) Registers
        2. 6.1.2 GPxDAT Registers
          1.        Example 18. Read-Modify-Write Effects on GPxDAT Registers
          2.        Example 19. Using GPxSET and GPxCLEAR Registers
      3. 6.2 Registers With Write 1-to-Clear Bits.
        1.       Example 20. Read-Modify-Write Operation Inadvertently Modifies Write 1-to-Clear Bits (TCR[TIF])
        2.       Example 21. Using a Shadow Register to Preserve Write 1-to-Clear Bits
      4. 6.3 Register Bits Requiring a Specific Value
        1.       Example 22. Watchdog Check Bits (WDCR[WDCHK])
      5. 6.4 Read-Modify-Write Sensitive Registers
    8. Special Case Peripherals
      1. 7.1 eCAN Control Registers
        1.       Example 23. Invalid eCAN Control Register 16-Bit Write
        2.       Example 24. Using a Shadow Register to Force a 32-Bit Access
      2. 7.2 Byte Peripheral Registers
        1.       Example 25. Invalid Byte Peripheral Register Access
        2.       Example 26. Byte Peripheral Register Access Using “byte_peripheral” Attribute
    9. C2000 Peripheral Driver Library Approach
      1. 8.1 Using the Peripheral Driver Library
        1.       Example 27. SCI-A Driverlib Function Prototype
          1.        Example 28. SCI-A Configuration Using the Driverlib
      2. 8.2 Construction of a Driver Library Function
        1.       Example 29. SCI Register Description Header File (hw_sci.h)
          1.        Example 30. SCI Function Implementation
      3. 8.3 Peripheral Driver Library Advantages
    10. Code Size and Performance Using Driverlib
      1.      Example 31. Inlined ADC_readResult() Function Calls
      2.      Example 32. ADC Function Implementation to be Optimized
      3.      Example 33. Inlined ADC_setupSOC() Function Call
    11. 10 Comparing and Combining Approaches
      1.      Example 34. CPU Timer Bit-Field (Left) and Driverlib (Right) Disassembly Comparison
      2.      Example 35. ADC Bit-Field (Left) and Driverlib (Right) Disassembly Comparison
    12. 11 References
  2.   Revision History

Bit Field and Register-File Structure Approach

Instead of accessing registers using #define macros, it is more flexible and efficient to use a bit field and register-file structure approach.

  • Register‐File Structures:
  • A register file is the collection of registers belonging to a peripheral. These registers are grouped together in C/C++ as members of a structure; this is called a register-file structure. Each register-file structure is mapped in memory directly over the peripheral registers at compile time. This mapping allows the compiler to efficiently access the registers using the CPU's data page pointer (DP).

  • Bit Field Definitions:
  • Bit fields can be used to assign a name and width to each functional field within a register. Registers defined in terms of bit fields allow the compiler to manipulate single elements within a register. For example, a flag can be read by referencing the bit field name corresponding to that flag.

The remainder of this section describes a register-file structure with bit-field implementation for the SCI peripherals. This process consists of the following steps:

  1. Create a simple SCI register-file structure variable type; this implementation does not include bit fields.
  2. Create a variable of this new type for each of the SCI instances.
  3. Map the register-file structure variables to the first address of the registers using the linker.
  4. Add bit-field definitions for select SCI registers.
  5. Add union definitions to provide access to either bit fields or the entire register.
  6. Rewrite the register-file structure type to include the bit-field and union definitions.

In the C/C++ Header Files and Peripheral Examples, the register-file structures and bit fields have been implemented for all peripherals on the C28x cores of the TMS320x28xx and TMS320x28xxx devices.