TIDUFF0 December   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 AWR2188
      2. 2.3.2 DS90UB971S-Q1
      3. 2.3.3 MSPM0G3519-Q1
      4. 2.3.4 LM68635-Q1
      5. 2.3.5 LP8772x-Q1
      6. 2.3.6 TPS6285018A-Q1
      7. 2.3.7 CDC6C025000-Q1
  9. 3System Design Theory
    1. 3.1 Diagnostic and Monitoring Features
    2. 3.2 Power over Coax (PoC) Network
    3. 3.3 SPI and I2C Communication Interface
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
      1. 4.3.1 Precautions
      2. 4.3.2 Data Capturing Approach
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 Launch on Package (LOP Antenna)
        2. 5.1.3.2 Power over Coax (PoC)
        3. 5.1.3.3 PCB Layer Stackup
        4. 5.1.3.4 Board Photos
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
      1. 5.5.1 About the Author
  12. 6About the Author

AWR2188

The AWR2188 device is an integrated single-chip FMCW transceiver capable of operation in the 76GHz to 81GHz band. The device enables unprecedented levels of integration in an extremely small form factor. AWR2188 is designed for low power, self-monitored, ultra-accurate radar systems in the automotive space.

The AWR2188 device is a self-contained FMCW transceiver single-chip device that simplifies the implementation of Automotive Radar sensors in the band of 76GHz to 81GHz. The device is built on TI’s low-power 45nm RFCMOS process, which enables a monolithic implementation of a 8TX, 8RX system with built-in PLL and ADC converters. Simple programming model changes can enable a wide variety of sensor implementation (short, mid, long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform device including reference hardware design, software drivers, sample configurations, API guide, and user documentation.