The DRV8214 is a high-performance integrated H-bridge motor driver with integrated speed and position detection using ripple counting along with additional features like motor speed and voltage regulation, stall detection, current sense output, current regulation, and protection circuitry.
The integrated ripple counting algorithm counts the number of ripples in the motor current to determine motor relative position and speed eliminating the potential need for encoders, hall sensors, or optical sensors. This reduces board space and design complexity, and saves on overall system cost. Integrated speed regulation is used to maintain constant motor speed over varying input supply voltages which minimizes current consumption and saves power over time. This is critical in applications that have different loading conditions or rely on battery power for operation where the input voltage is not constant. Soft-start and stop allows for a controlled turn-on and turn-off time, reducing large inrush currents to protect the motor windings from damage, thereby increasing system reliability and longevity.
An internal current mirror implements current sensing and regulation. This eliminates the need for a large power shunt resistor, saving board area and reducing system cost. The IPROPI current sense output allows a microcontroller to detect motor stall or changes in load conditions. The gain select feature allows high accuracy current sensing down to 10 mA average motor current. Using the VREF pin, this device can regulate the motor current during startup and high-load events without interaction from a microcontroller. The device supports sensorless motor stall detection and reporting to microcontroller.
The DRV8214 is a high-performance integrated H-bridge motor driver with integrated speed and position detection using ripple counting along with additional features like motor speed and voltage regulation, stall detection, current sense output, current regulation, and protection circuitry.
The integrated ripple counting algorithm counts the number of ripples in the motor current to determine motor relative position and speed eliminating the potential need for encoders, hall sensors, or optical sensors. This reduces board space and design complexity, and saves on overall system cost. Integrated speed regulation is used to maintain constant motor speed over varying input supply voltages which minimizes current consumption and saves power over time. This is critical in applications that have different loading conditions or rely on battery power for operation where the input voltage is not constant. Soft-start and stop allows for a controlled turn-on and turn-off time, reducing large inrush currents to protect the motor windings from damage, thereby increasing system reliability and longevity.
An internal current mirror implements current sensing and regulation. This eliminates the need for a large power shunt resistor, saving board area and reducing system cost. The IPROPI current sense output allows a microcontroller to detect motor stall or changes in load conditions. The gain select feature allows high accuracy current sensing down to 10 mA average motor current. Using the VREF pin, this device can regulate the motor current during startup and high-load events without interaction from a microcontroller. The device supports sensorless motor stall detection and reporting to microcontroller.