제품 상세 정보

Function Memory interface Additive RMS jitter (typ) (fs) 30 Output frequency (max) (MHz) 945 Number of outputs 60 Output supply voltage (V) 1.35 Core supply voltage (V) 1.35 Features DDR3 register Operating temperature range (°C) 0 to 85 Rating Catalog Output type CMOS Input type CMOS
Function Memory interface Additive RMS jitter (typ) (fs) 30 Output frequency (max) (MHz) 945 Number of outputs 60 Output supply voltage (V) 1.35 Core supply voltage (V) 1.35 Features DDR3 register Operating temperature range (°C) 0 to 85 Rating Catalog Output type CMOS Input type CMOS
NFBGA (ZAL) 176 108 mm² 13.5 x 8
  • JEDEC SSTE32882
  • 1-to-2 Register Outputs and 1-to-4 Clock Pair Outputs Support
    Stacked DDR3 RDIMMs
  • CKE Powerdown Mode for Optimized System Power Consumption
  • 1.5V/1.35V/1.25V Phase Lock Loop Clock Driver for Buffering
    One Differential Clock Pair (CK and CK)
    and Distributing to Four Differential Outputs
  • 1.5V/1.35V/1.25V CMOS Inputs
  • Checks Parity on Command and Address (CS-Gated) Data Inputs
  • Configurable Driver Strength
  • Uses Internal Feedback Loop
  • Optimized Power Consumption
  • JEDEC SSTE32882
  • 1-to-2 Register Outputs and 1-to-4 Clock Pair Outputs Support
    Stacked DDR3 RDIMMs
  • CKE Powerdown Mode for Optimized System Power Consumption
  • 1.5V/1.35V/1.25V Phase Lock Loop Clock Driver for Buffering
    One Differential Clock Pair (CK and CK)
    and Distributing to Four Differential Outputs
  • 1.5V/1.35V/1.25V CMOS Inputs
  • Checks Parity on Command and Address (CS-Gated) Data Inputs
  • Configurable Driver Strength
  • Uses Internal Feedback Loop
  • Optimized Power Consumption

This 1:2 or 26-bit 1:2 and 4-bit 1:1 registering clock driver with parity is designed for operation on DDR3 registered DIMMs with VDD of 1.5 V, on DDR3L registered DIMMs with VDD of 1.35 V and on DDR3U registered DIMMs with VDD of 1.25 V.

All inputs are 1.5 V, 1.35V and 1.25 V CMOS compatible. All outputs are CMOS drivers optimized to drive DRAM signals on terminated traces in DDR3 RDIMM applications. The clock outputs Yn and Yn and control net outputs DxCKEn, DxCSn and DxODTn can be driven with a different strength and skew to optimize signal integrity, compensate for different loading and equalize signal travel speed.

The SN74SSQEC32882 has two basic modes of operation associated with the Quad Chip Select Enable (QCSEN) input. When the QCSEN input pin is open (or pulled high), the component has two chip select inputs, DCS0 and DCS1, and two copies of each chip select output, QACS0, QACS1, QBCS0 and QBCS1. This is the "QuadCS disabled" mode. When the QCSEN input pin is pulled low, the component has four chip select inputs DCS[3:0], and four chip select outputs, QCS[3:0]. This is the "QuadCS enabled" mode. Through the remainder of this specification, DCS[n:0] will indicate all of the chip select inputs, where n=1 for QuadCS disabled, and n=3 for QuadCS enabled. QxCS[n:0] will indicate all of the chip select outputs.

The device also supports a mode where a single device can be mounted on the back side of a DIMM. If MIRROR=HIGH, Input Bus Termination (IBT) has to stay enabled for all input signals in this case.

The SN74SSQEC32882 operates from a differential clock (CK and CK). Data are registered at the crossing of CK going HIGH, and CK going LOW. This data could be either re-driven to the outputs or it could be used to access device internal control registers.

The input bus data integrity is protected by a parity function. All address and command input signals are added up and the last bit of the sum is compared to the parity signal delivered by the system at the input PAR_IN one clock cycle later. If they do not match the device pulls the open drain output ERROUT LOW. The control signals (DCKE0, DCKE1, DODT0, DODT1, DCS[n:0]) are not part of this computation.

The SN74SSQEC32882 implements different power saving mechanisms to reduce thermal power dissipation and to support system power down states. By disabling unused outputs the power consumption is further reduced.

The package is optimized to support high density DIMMs. By aligning input and output positions towards DIMM finger signal ordering and SDRAM ballout the device de-scrambles the DIMM traces allowing low cross talk design with low interconnect latency.

Edge controlled outputs reduce ringing and improve signal eye opening at the SDRAM inputs.

This 1:2 or 26-bit 1:2 and 4-bit 1:1 registering clock driver with parity is designed for operation on DDR3 registered DIMMs with VDD of 1.5 V, on DDR3L registered DIMMs with VDD of 1.35 V and on DDR3U registered DIMMs with VDD of 1.25 V.

All inputs are 1.5 V, 1.35V and 1.25 V CMOS compatible. All outputs are CMOS drivers optimized to drive DRAM signals on terminated traces in DDR3 RDIMM applications. The clock outputs Yn and Yn and control net outputs DxCKEn, DxCSn and DxODTn can be driven with a different strength and skew to optimize signal integrity, compensate for different loading and equalize signal travel speed.

The SN74SSQEC32882 has two basic modes of operation associated with the Quad Chip Select Enable (QCSEN) input. When the QCSEN input pin is open (or pulled high), the component has two chip select inputs, DCS0 and DCS1, and two copies of each chip select output, QACS0, QACS1, QBCS0 and QBCS1. This is the "QuadCS disabled" mode. When the QCSEN input pin is pulled low, the component has four chip select inputs DCS[3:0], and four chip select outputs, QCS[3:0]. This is the "QuadCS enabled" mode. Through the remainder of this specification, DCS[n:0] will indicate all of the chip select inputs, where n=1 for QuadCS disabled, and n=3 for QuadCS enabled. QxCS[n:0] will indicate all of the chip select outputs.

The device also supports a mode where a single device can be mounted on the back side of a DIMM. If MIRROR=HIGH, Input Bus Termination (IBT) has to stay enabled for all input signals in this case.

The SN74SSQEC32882 operates from a differential clock (CK and CK). Data are registered at the crossing of CK going HIGH, and CK going LOW. This data could be either re-driven to the outputs or it could be used to access device internal control registers.

The input bus data integrity is protected by a parity function. All address and command input signals are added up and the last bit of the sum is compared to the parity signal delivered by the system at the input PAR_IN one clock cycle later. If they do not match the device pulls the open drain output ERROUT LOW. The control signals (DCKE0, DCKE1, DODT0, DODT1, DCS[n:0]) are not part of this computation.

The SN74SSQEC32882 implements different power saving mechanisms to reduce thermal power dissipation and to support system power down states. By disabling unused outputs the power consumption is further reduced.

The package is optimized to support high density DIMMs. By aligning input and output positions towards DIMM finger signal ordering and SDRAM ballout the device de-scrambles the DIMM traces allowing low cross talk design with low interconnect latency.

Edge controlled outputs reduce ringing and improve signal eye opening at the SDRAM inputs.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기1
유형 직함 날짜
* Data sheet DDR3 Register and PLL datasheet 2011/08/24

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
패키지 다운로드
NFBGA (ZAL) 176 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상