전원 관리 AC/DC & DC/DC converters (integrated FET)

TPS61000

활성

조정 가능 출력을 지원하는 낮은 입력 전압 비동기 부스트 컨버터

제품 상세 정보

Vin (min) (V) 0.8 Vin (max) (V) 3.3 Topology Boost Type Converter Switching frequency (min) (kHz) 360 Switching frequency (max) (kHz) 840 Features Enable, Light Load Efficiency, Nonsynchronous, Power good Vout (min) (V) 1.5 Vout (max) (V) 3.3 Rating Catalog Operating temperature range (°C) -40 to 125 Iq (typ) (A) 0.00005
Vin (min) (V) 0.8 Vin (max) (V) 3.3 Topology Boost Type Converter Switching frequency (min) (kHz) 360 Switching frequency (max) (kHz) 840 Features Enable, Light Load Efficiency, Nonsynchronous, Power good Vout (min) (V) 1.5 Vout (max) (V) 3.3 Rating Catalog Operating temperature range (°C) -40 to 125 Iq (typ) (A) 0.00005
VSSOP (DGS) 10 14.7 mm² 3 x 4.9
  • Start-Up Into a Full Load With Supply Voltages as
    Low as 0.9 V Over Full Temperature Range
  • Minimum 100-mA Output Current From 0.8-V
    Supply Voltage, 250 mA From 1.8 V
  • High Power Conversion Efficiency, up to 90%
  • Power-Save Mode for Improved Efficiency at Low
    Output Currents
  • Device Quiescent Current Less Than 50 µA
  • Added System Security With Integrated Low-
    Battery Comparator
  • Low-EMI Converter (Integrated Antiringing Switch
    Across Inductor)
  • Micro-Size 10-Pin MSOP Package
  • Evaluation Modules Available
    (TPS6100xEVM–156)
  • Start-Up Into a Full Load With Supply Voltages as
    Low as 0.9 V Over Full Temperature Range
  • Minimum 100-mA Output Current From 0.8-V
    Supply Voltage, 250 mA From 1.8 V
  • High Power Conversion Efficiency, up to 90%
  • Power-Save Mode for Improved Efficiency at Low
    Output Currents
  • Device Quiescent Current Less Than 50 µA
  • Added System Security With Integrated Low-
    Battery Comparator
  • Low-EMI Converter (Integrated Antiringing Switch
    Across Inductor)
  • Micro-Size 10-Pin MSOP Package
  • Evaluation Modules Available
    (TPS6100xEVM–156)

The TPS6100x devices are boost converters intended for systems that are typically operated from a single- or dual-cell nickel-cadmium (NiCd), nickel-metal hydride (NiMH), or alkaline battery. The converter output voltage can be adjusted from 1.5 V to a maximum of 3.3 V and provides a minimum output current of 100 mA from a single battery cell and 250 mA from two battery cells. The converter starts up into a full load with a supply voltage of 0.9 V and stays in operation with supply voltages as low as 0.8 V.

The converter is based on a fixed-frequency, current-mode pulse-width-modulation (PWM) controller that goes into power-save mode at low load currents. The current through the switch is limited to a maximum of 1100 mA, depending on the output voltage. The current sense is integrated to further minimize external component count. The converter can be disabled to minimize battery drain when the system is put into standby.

A low-EMI mode is implemented to reduce interference and radiated electromagnetic energy that is caused by the ringing of the inductor when the inductor discharge-current decreases to zero. The device is packaged in the space-saving 10-pin MSOP package.

The TPS6100x devices are boost converters intended for systems that are typically operated from a single- or dual-cell nickel-cadmium (NiCd), nickel-metal hydride (NiMH), or alkaline battery. The converter output voltage can be adjusted from 1.5 V to a maximum of 3.3 V and provides a minimum output current of 100 mA from a single battery cell and 250 mA from two battery cells. The converter starts up into a full load with a supply voltage of 0.9 V and stays in operation with supply voltages as low as 0.8 V.

The converter is based on a fixed-frequency, current-mode pulse-width-modulation (PWM) controller that goes into power-save mode at low load currents. The current through the switch is limited to a maximum of 1100 mA, depending on the output voltage. The current sense is integrated to further minimize external component count. The converter can be disabled to minimize battery drain when the system is put into standby.

A low-EMI mode is implemented to reduce interference and radiated electromagnetic energy that is caused by the ringing of the inductor when the inductor discharge-current decreases to zero. The device is packaged in the space-saving 10-pin MSOP package.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기9
유형 직함 날짜
* Data sheet TPS6100x Single- and Dual-Cell Boost Converter With Start-up Into Full Load datasheet (Rev. D) PDF | HTML 2015/08/31
Application note 스트컨버터의 전력계 기본 계산 (Rev. D) PDF | HTML 2022/11/21
Application note Performing Accurate PFM Mode Efficiency Measurements (Rev. A) 2018/12/11
Application note Optimizing Transient Response of Internally Compensated DC-DC Converters (Rev. B) 2017/11/29
Application note Extending the Soft Start Time Without a Soft Start Pin (Rev. B) 2017/06/15
Analog Design Journal Design considerations for a resistive feedback divider in a DC/DC converter 2012/04/26
Application note Choosing an Appropriate Pull-up/Pull-down Resistor for Open Drain Outputs 2011/09/19
Analog Design Journal IQ: What it is, what it isn’t, and how to use it 2011/06/17
Application note Minimizing Ringing at the Switch Node of a Boost Converter 2006/09/15

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

TPS61000 TINA-TI Average Reference Design (Rev. A)

SLVC117A.TSC (749 KB) - TINA-TI Reference Design
시뮬레이션 모델

TPS61000 TINA-TI Average Spice Model

SLVM051.TSM (2 KB) - TINA-TI Spice Model
시뮬레이션 모델

TPS61000 TINA-TI Transient Reference Design

SLVM052.TSC (168 KB) - TINA-TI Reference Design
시뮬레이션 모델

TPS61000 TINA-TI Transient Spice Model

SLVM053.TSM (2 KB) - TINA-TI Spice Model
패키지 다운로드
VSSOP (DGS) 10 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상