TPS6593-Q1

활성

벅 5개, LDO 4개가 있는 오토모티브 2.8V~5.5V PMIC

제품 상세 정보

Regulated outputs (#) 9 Configurability User programmable Vin (min) (V) 2.8 Vin (max) (V) 5.5 Vout (min) (V) 0.3 Vout (max) (V) 3.3 Iout (max) (A) 14 Features Adaptive/dynamic voltage scaling, Comm control, Dynamic voltage scaling, I2C control, Multiple outputs, Output discharge, Overcurrent protection, Power good, Power sequencing, SPI control, Soft-start adjustable TI functional safety category Functional Safety-Compliant Step-up DC/DC converter 0 Step-down DC/DC converter 5 Step-down DC/DC controller 0 Step-up DC/DC controller 0 LDO 4 Iq (typ) (mA) 0.002 Rating Automotive Switching frequency (max) (kHz) 2400 Operating temperature range (°C) -40 to 125 Processor supplier Generic Processor name Generic Shutdown current (ISD) (typ) (µA) 2 Switching frequency (typ) (kHz) 2200 Product type Processor and FPGA
Regulated outputs (#) 9 Configurability User programmable Vin (min) (V) 2.8 Vin (max) (V) 5.5 Vout (min) (V) 0.3 Vout (max) (V) 3.3 Iout (max) (A) 14 Features Adaptive/dynamic voltage scaling, Comm control, Dynamic voltage scaling, I2C control, Multiple outputs, Output discharge, Overcurrent protection, Power good, Power sequencing, SPI control, Soft-start adjustable TI functional safety category Functional Safety-Compliant Step-up DC/DC converter 0 Step-down DC/DC converter 5 Step-down DC/DC controller 0 Step-up DC/DC controller 0 LDO 4 Iq (typ) (mA) 0.002 Rating Automotive Switching frequency (max) (kHz) 2400 Operating temperature range (°C) -40 to 125 Processor supplier Generic Processor name Generic Shutdown current (ISD) (typ) (µA) 2 Switching frequency (typ) (kHz) 2200 Product type Processor and FPGA
VQFNP (RWE) 56 64 mm² 8 x 8
  • Qualified for automotive applications
  • AEC-Q100 qualified with the following results:
    • Device operates from 3 V to 5.5 V input supply
    • Device temperature grade 1: –40°C to +125°C ambient operating temperature range
    • Device HBM classification level 2
    • Device CDM classification level C4A
  • Functional Safety-Compliant
    • Developed for functional safety applications
    • Documentation to aid ISO26262 and IEC61508 system design available upon product release
    • Systematic capability up to ASIL-D and SIL-3
    • Hardware integrity up to ASIL-B and SIL-2
    • Input supply voltage monitor
    • Under/overvoltage monitors and over-current monitors on all output supply rails
    • Watchdog with selectable trigger / Q&A mode
    • Two error signal monitors (ESMs) with selectable level / PWM mode
    • Thermal monitoring with high temperature warning and thermal shutdown
    • Bit-integrity (CRC) error detection on internal configuration registers and non-volatile memory (NVM)
  • Low-power consumption
    • 2 µA typical shutdown current
    • 7 µA typical in back up supply only mode
    • 20 µA typical in low power standby mode
  • Five step-down switched-mode power supply (BUCK) regulators:
    • 0.3 V to 3.34 V output voltage range in 5, 10, or 20-mV steps
    • One with 4 A, three with 3.5 A, and one with 2 A output current capability
    • Flexible multi-phase capability for four BUCKs: up to 14 A output current from a single rail
    • Short-circuit and over-current protection
    • Internal soft-start for in-rush current limitation
    • 2.2 MHz / 4.4 MHz switching frequency
    • Ability to synchronize to external clock input
  • Three low-dropout (LDO) linear regulators with configurable bypass mode
    • 0.6 V to 3.3 V output voltage range with 50-mV steps in linear regulation mode
    • 1.7 V to 3.3 V output voltage range in bypass mode
    • 500 mA output current capability with short-circuit and over-current protection
  • One low-dropout (LDO) linear regulator with low-noise performance
    • 1.2 V to 3.3 V output voltage range in 25-mV steps
    • 300 mA output current capability with short-circuit and over-current protection
  • Configurable power sequence control in non-volatile memory (NVM):
    • Configurable power-up and power-down sequences between power states
    • Digital output signals can be included in the power sequences
    • Digital input signals can be used to trigger power sequence transitions
    • Configurable handling of safety-relevant errors
  • 32-kHz crystal oscillator with option to output a buffered 32-kHz clock output
  • Real-time clock (RTC) with alarm and periodic wake-up mechanism
  • One SPI or two I 2C control interfaces , with second I 2C interface dedicated for Q&A watchdog communication
  • Package option:
    • 8-mm × 8-mm 56-pin VQFNP with 0.5-mm pitch
  • Qualified for automotive applications
  • AEC-Q100 qualified with the following results:
    • Device operates from 3 V to 5.5 V input supply
    • Device temperature grade 1: –40°C to +125°C ambient operating temperature range
    • Device HBM classification level 2
    • Device CDM classification level C4A
  • Functional Safety-Compliant
    • Developed for functional safety applications
    • Documentation to aid ISO26262 and IEC61508 system design available upon product release
    • Systematic capability up to ASIL-D and SIL-3
    • Hardware integrity up to ASIL-B and SIL-2
    • Input supply voltage monitor
    • Under/overvoltage monitors and over-current monitors on all output supply rails
    • Watchdog with selectable trigger / Q&A mode
    • Two error signal monitors (ESMs) with selectable level / PWM mode
    • Thermal monitoring with high temperature warning and thermal shutdown
    • Bit-integrity (CRC) error detection on internal configuration registers and non-volatile memory (NVM)
  • Low-power consumption
    • 2 µA typical shutdown current
    • 7 µA typical in back up supply only mode
    • 20 µA typical in low power standby mode
  • Five step-down switched-mode power supply (BUCK) regulators:
    • 0.3 V to 3.34 V output voltage range in 5, 10, or 20-mV steps
    • One with 4 A, three with 3.5 A, and one with 2 A output current capability
    • Flexible multi-phase capability for four BUCKs: up to 14 A output current from a single rail
    • Short-circuit and over-current protection
    • Internal soft-start for in-rush current limitation
    • 2.2 MHz / 4.4 MHz switching frequency
    • Ability to synchronize to external clock input
  • Three low-dropout (LDO) linear regulators with configurable bypass mode
    • 0.6 V to 3.3 V output voltage range with 50-mV steps in linear regulation mode
    • 1.7 V to 3.3 V output voltage range in bypass mode
    • 500 mA output current capability with short-circuit and over-current protection
  • One low-dropout (LDO) linear regulator with low-noise performance
    • 1.2 V to 3.3 V output voltage range in 25-mV steps
    • 300 mA output current capability with short-circuit and over-current protection
  • Configurable power sequence control in non-volatile memory (NVM):
    • Configurable power-up and power-down sequences between power states
    • Digital output signals can be included in the power sequences
    • Digital input signals can be used to trigger power sequence transitions
    • Configurable handling of safety-relevant errors
  • 32-kHz crystal oscillator with option to output a buffered 32-kHz clock output
  • Real-time clock (RTC) with alarm and periodic wake-up mechanism
  • One SPI or two I 2C control interfaces , with second I 2C interface dedicated for Q&A watchdog communication
  • Package option:
    • 8-mm × 8-mm 56-pin VQFNP with 0.5-mm pitch

The TPS6593-Q1 device provides four flexible multi-phase configurable BUCK regulators with 3.5 A output current per phase, and one additional BUCK regulator with 2 A output current.

All of the BUCK regulators can be synchronized to an internal 2.2-MHz or 4.4-MHz or an external 1-MHz, 2-MHz, or 4-MHz clock signal. To improve the EMC performance, an integrated spread-spectrum modulation can be added to the synchronized BUCK switching clock signal. This clock signal can also be made available to external devices through a GPIO output pin. The device provides four LDOs: three with 500-mA capability, which can be configured as load switches; one with 300-mA capability and low-noise performance.

Non-volatile memory (NVM) is used to control the default power sequences and default configurations, such as output voltage and GPIO configurations. The NVM is pre-programmed to allow start-up without external programming. Most static configurations, stored in the register map of the device, can be changed from the default through SPI or I 2C interfaces to configure the device to meet many different system needs. The NVM contains a bit-integrity-error detection feature (CRC) to stop the power-up sequence if an error is detected, preventing the system from starting in an unknown state.

The TPS6593-Q1 includes a 32-kHz crystal oscillator, which generates an accurate 32-kHz clock for the integrated RTC module. A backup-battery management provides power to the crystal oscillator and the real-time clock (RTC) module from a coin cell battery or a super-cap in the event of power loss from the main supply.

The TPS6593-Q1 device includes protection and diagnostic mechanisms such as voltage monitoring on the input supply, voltage monitoring on all BUCK and LDO regulator outputs, register and interface CRC, current-limit, short-circuit protection, thermal pre-warning, and over-temperature shutdown. The device also includes a Q&A or trigger mode watchdog to monitor for MCU software lockup, and two error signal monitor (ESM) inputs with fault injection options to monitor the error signals from the attached SoC or MCU. The TPS6593-Q1 can notify the processor of these events through the interrupt handler, allowing the MCU to take action in response.

The TPS6593-Q1 device provides four flexible multi-phase configurable BUCK regulators with 3.5 A output current per phase, and one additional BUCK regulator with 2 A output current.

All of the BUCK regulators can be synchronized to an internal 2.2-MHz or 4.4-MHz or an external 1-MHz, 2-MHz, or 4-MHz clock signal. To improve the EMC performance, an integrated spread-spectrum modulation can be added to the synchronized BUCK switching clock signal. This clock signal can also be made available to external devices through a GPIO output pin. The device provides four LDOs: three with 500-mA capability, which can be configured as load switches; one with 300-mA capability and low-noise performance.

Non-volatile memory (NVM) is used to control the default power sequences and default configurations, such as output voltage and GPIO configurations. The NVM is pre-programmed to allow start-up without external programming. Most static configurations, stored in the register map of the device, can be changed from the default through SPI or I 2C interfaces to configure the device to meet many different system needs. The NVM contains a bit-integrity-error detection feature (CRC) to stop the power-up sequence if an error is detected, preventing the system from starting in an unknown state.

The TPS6593-Q1 includes a 32-kHz crystal oscillator, which generates an accurate 32-kHz clock for the integrated RTC module. A backup-battery management provides power to the crystal oscillator and the real-time clock (RTC) module from a coin cell battery or a super-cap in the event of power loss from the main supply.

The TPS6593-Q1 device includes protection and diagnostic mechanisms such as voltage monitoring on the input supply, voltage monitoring on all BUCK and LDO regulator outputs, register and interface CRC, current-limit, short-circuit protection, thermal pre-warning, and over-temperature shutdown. The device also includes a Q&A or trigger mode watchdog to monitor for MCU software lockup, and two error signal monitor (ESM) inputs with fault injection options to monitor the error signals from the attached SoC or MCU. The TPS6593-Q1 can notify the processor of these events through the interrupt handler, allowing the MCU to take action in response.

다운로드 스크립트와 함께 비디오 보기 동영상
Information

추가 정보

최종 제품 릴리스 장치는 ASIL-B/SIL-2 기능 안전 적합성 대상입니다

  • ISO26262 및 IEC61508 적합성 지원 문서
  • 시스템 기능이 최대 ASIL-D 및 SIL-3 대상
  • 하드웨어 무결성 최대 ASIL-B 및 SIL-2 대상

관심 가지실만한 유사 제품

open-in-new 대안 비교
다른 핀 출력을 지원하지만 비교 대상 장치와 동일한 기능
TPS6594-Q1 활성 벅 컨버터 5개 및 저손실 레귤레이터 4개가 포함된 오토모티브, 2.8V~5.5V PMIC Helps achieve ASIL-D functional safety.

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기6
유형 직함 날짜
* Data sheet TPS6593-Q1 Power Management IC (PMIC) with 5 BUCKs and 4 LDOs for Safety-Relevant Automotive Applications datasheet (Rev. B) PDF | HTML 2023/09/20
Technical article Four power supply challenges in ADAS front camera designs PDF | HTML 2024/01/05
Product overview PMIC Solution for AM62A PDF | HTML 2023/08/31
User guide TPS65931211-Q1 PMIC User Guide for AM62A PDF | HTML 2023/07/27
Certificate TPS6593EVM EU Declaration of Conformity (DoC) (Rev. A) 2023/05/02
User guide Programmable PMICs: TPS6593-Q1 Default Configuration for TPS6593EVM 2021/05/04

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

TPS6594-Q1 PSpice Transient Model (Rev. B)

SLVMDJ8B.ZIP (241 KB) - PSpice Model
패키지 다운로드
VQFNP (RWE) 56 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상