產品詳細資料

Architecture Current FB Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 8 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 12 GBW (typ) (MHz) 480 BW at Acl (MHz) 480 Acl, min spec gain (V/V) 1 Slew rate (typ) (V/µs) 1300 Vn at flatband (typ) (nV√Hz) 3.4 Vn at 1 kHz (typ) (nV√Hz) 3.4 Iq per channel (typ) (mA) 5.8 Vos (offset voltage at 25°C) (max) (mV) 6 Rail-to-rail No Rating Catalog Operating temperature range (°C) -40 to 85 CMRR (typ) (dB) 56 Input bias current (max) (pA) 12000000 Offset drift (typ) (µV/°C) 30 Iout (typ) (mA) 70 2nd harmonic (dBc) 60 3rd harmonic (dBc) 75 Frequency of harmonic distortion measurement (MHz) 20
Architecture Current FB Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 8 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 12 GBW (typ) (MHz) 480 BW at Acl (MHz) 480 Acl, min spec gain (V/V) 1 Slew rate (typ) (V/µs) 1300 Vn at flatband (typ) (nV√Hz) 3.4 Vn at 1 kHz (typ) (nV√Hz) 3.4 Iq per channel (typ) (mA) 5.8 Vos (offset voltage at 25°C) (max) (mV) 6 Rail-to-rail No Rating Catalog Operating temperature range (°C) -40 to 85 CMRR (typ) (dB) 56 Input bias current (max) (pA) 12000000 Offset drift (typ) (µV/°C) 30 Iout (typ) (mA) 70 2nd harmonic (dBc) 60 3rd harmonic (dBc) 75 Frequency of harmonic distortion measurement (MHz) 20
SOIC (D) 8 29.4 mm² 4.9 x 6
  • TA = 25°C, RL = 100Ω, Typical Values Unless Specified.
  • Very Low Diff. Gain, Phase: 0.02%, 0.02°
  • Wide Bandwidth: 480MHz (AV = +1V/V); 400MHz (AV = +2V/V)
  • 0.1dB Gain Flatness to 100MHz
  • Low Power: 5.8mA/Channel
  • −70dB Channel-to-Channel Crosstalk (10MHz)
  • Fast Slew Rate: 1300V/μs
  • Unity Gain Stable
  • Improved Replacement for CLC412

All trademarks are the property of their respective owners.

  • TA = 25°C, RL = 100Ω, Typical Values Unless Specified.
  • Very Low Diff. Gain, Phase: 0.02%, 0.02°
  • Wide Bandwidth: 480MHz (AV = +1V/V); 400MHz (AV = +2V/V)
  • 0.1dB Gain Flatness to 100MHz
  • Low Power: 5.8mA/Channel
  • −70dB Channel-to-Channel Crosstalk (10MHz)
  • Fast Slew Rate: 1300V/μs
  • Unity Gain Stable
  • Improved Replacement for CLC412

All trademarks are the property of their respective owners.

The LMH6715 combines TI's VIP10 high speed complementary bipolar process with TI's current feedback topology to produce a very high speed dual op amp. The LMH6715 provides 400MHz small signal bandwidth at a gain of +2V/V and 1300V/μs slew rate while consuming only 5.8mA per amplifier from ±5V supplies.

The LMH6715 offers exceptional video performance with its 0.02% and 0.02° differential gain and phase errors for NTSC and PAL video signals while driving up to four back terminated 75Ω loads. The LMH6715 also offers a flat gain response of 0.1dB to 100MHz and very low channel-to-channel crosstalk of −70dB at 10MHz. Additionally, each amplifier can deliver 70mA of output current. This level of performance makes the LMH6715 an ideal dual op amp for high density, broadcast quality video systems.

The LMH6715's two very well matched amplifiers support a number of applications such as differential line drivers and receivers. In addition, the LMH6715 is well suited for Sallen Key active filters in applications such as anti-aliasing filters for high speed A/D converters. Its small 8-pin SOIC package, low power requirement, low noise and distortion allow the LMH6715 to serve portable RF applications such as IQ channels.

The LMH6715 combines TI's VIP10 high speed complementary bipolar process with TI's current feedback topology to produce a very high speed dual op amp. The LMH6715 provides 400MHz small signal bandwidth at a gain of +2V/V and 1300V/μs slew rate while consuming only 5.8mA per amplifier from ±5V supplies.

The LMH6715 offers exceptional video performance with its 0.02% and 0.02° differential gain and phase errors for NTSC and PAL video signals while driving up to four back terminated 75Ω loads. The LMH6715 also offers a flat gain response of 0.1dB to 100MHz and very low channel-to-channel crosstalk of −70dB at 10MHz. Additionally, each amplifier can deliver 70mA of output current. This level of performance makes the LMH6715 an ideal dual op amp for high density, broadcast quality video systems.

The LMH6715's two very well matched amplifiers support a number of applications such as differential line drivers and receivers. In addition, the LMH6715 is well suited for Sallen Key active filters in applications such as anti-aliasing filters for high speed A/D converters. Its small 8-pin SOIC package, low power requirement, low noise and distortion allow the LMH6715 to serve portable RF applications such as IQ channels.

下載 觀看有字幕稿的影片 影片

您可能會感興趣的類似產品

open-in-new 比較替代產品
引腳對引腳的功能與所比較的產品相同
LMH6715-MIL 現行 雙寬頻視訊運算放大器 Military grade version

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 3
類型 標題 日期
* Data sheet LMH6715 Dual Wideband Video Op Amp datasheet (Rev. C) 2013年 4月 22日
Technical article 3 common questions when designing with high-speed amplifiers PDF | HTML 2020年 7月 17日
E-book The Signal e-book: A compendium of blog posts on op amp design topics 2017年 3月 28日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

開發板

LMH730036 — 適用於 8 針腳 SOIC 封裝之高速雙運算放大器的評估板

Texas Instruments offers this unpopulated Evaluation Board to aid in the evaluation and testing of high-speed Op Amp that are offered in the 8-Pin SOIC package. Resistors, capacitors, or any other surface-mount components can be easily mounted on this board in the desired circuit configuration. The (...)

使用指南: PDF
TI.com 無法提供
模擬型號

LMH6715 PSPICE Model

SNOM117.ZIP (1 KB) - PSpice Model
計算工具

ANALOG-ENGINEER-CALC — 類比工程師計算機

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
計算工具

VOLT-DIVIDER-CALC — Voltage divider calculation tool

The voltage divider calculation tool (VOLT-DIVIDER-CALC) quickly determines a set of resistors for a voltage divider. This KnowledgeBase JavaScript utility can be used to find a set of resistors for a voltage divider to achieve the desired output voltage. VOLT-DIVIDER-CALC can also be used to (...)
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
封裝 引腳 下載
SOIC (D) 8 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片