SNOS641I October   1999  – July 2025 LM4041-N , LM4041-N-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     Pin Functions
    2.     Pin Functions: ADJ Pinouts
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  LM4041-N LM4041-N-Q1 1.2 Electrical Characteristics (Industrial Temperature Range)
    6. 5.6  LM4041-N LM4041-N-Q1 1.2 Electrical Characteristics (Industrial Temperature Range)
    7. 5.7  LM4041-N LM4041-N-Q1 1.2 Electrical Characteristics (Extended Temperature Range)
    8. 5.8  LM4041-N LM4041-N-Q1 ADJ (Adjustable) Electrical Characteristics (Industrial Temperature Range)
    9. 5.9  LM4041-N LM4041-N-Q1 ADJ (Adjustable) Electrical Characteristics (Extended Temperature Range)
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Shunt Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Adjustable Shunt Regulator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detail Design Procedure
      3. 8.2.3 Bounded Amplifier
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detail Design Procedure
        3. 8.2.3.3 Application Curve
      4. 8.2.4 Voltage Level Detector
        1. 8.2.4.1 Design Procedure
        2. 8.2.4.2 Detail Design Procedure
      5. 8.2.5 Precision Current Sink and Source
        1. 8.2.5.1 Design Requirements
        2. 8.2.5.2 Detailed Design Procedure
      6. 8.2.6 100mA Current Source
        1. 8.2.6.1 Design Requirements
        2. 8.2.6.2 Detailed Design Procedure
      7. 8.2.7 LM4041 in Clamp Circuits
        1. 8.2.7.1 Design Requirements
        2. 8.2.7.2 Detailed Design Procedure
      8. 8.2.8 Floating Current Detector
        1. 8.2.8.1 Design Requirement
        2. 8.2.8.2 Detailed Design Procedure
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

LM4041-NLM4041-N-Q1 1.2 Electrical Characteristics (Extended Temperature Range)

Reverse breakdown change with curren

All limits TA = TJ = 25°C, unless otherwise specified. The grades C, D, and E designate initial reverse breakdown voltage tolerance of ±0.5%, ±1.0%, and ±2.0% respectively.
PARAMETERTEST CONDITIONSMIN(1)TYP(2)MAX(1)UNIT
VRReverse breakdown voltageIR = 100μA1.225V
Reverse breakdown voltage error(3)IR = 100μATA = TJ = 25°CLM4041CEM3
LM4041QCEM3
±6mV
LM4041DEM3
LM4041QDEM3
±12
LM4041EEM3
LM4041QEEM3
±25
TA = TJ = TMIN to TMAXLM4041CEM3
LM4041QCEM3
±18.4
LM4041DEM3
LM4041QDEM3
±31
LM4041EEM3
LM4041QEEM3
±43
IRMINMinimum operating currentTA = TJ = 25°CLM4041CEM3
LM4041QCEM3
4560μA
LM4041DEM3,
LM4041QDEM3,
LM4041EEM3,
LM4041QEEM3
65
TA = TJ = TMIN to TMAXLM4041CEM3
LM4041QCEM3
68
LM4041DEM3,
LM4041QDEM3,
LM4041EEM3,
LM4041QEEM3
73
ΔVR/ΔTVR temperature coefficient(3)IR = 10mA±20ppm/°C
IR = 1mATA = TJ = 25°C±15
TA = TJ = TMIN to TMAXLM4041CEM3
LM4041QCEM3
±100
LM4041DEM3,
LM4041QDEM3,
LM4041EEM3,
LM4041QEEM3
±150
IR = 100µA±15
ΔVR/ΔIRReverse breakdown change with current(4)IRMIN ≤ IR ≤ 1.0mATA = TJ = 25°CLM4041DEM3
LM4041QDEM3
0.71.5mV
LM4041EEM3
LM4041QEEM3
2
TA = TJ = TMIN to TMAXLM4041CEM3
LM4041QCEM3
2
LM4041DEM3,
LM4041QDEM3,
LM4041EEM3,
LM4041QEEM3
2.5
1mA ≤ IR ≤ 12mATA = TJ = 25°CLM4041CEM3
LM4041QCEM3
2.56mV
LM4041DEM3,
LM4041QDEM3,
LM4041EEM3,
LM4041QEEM3
8
TA = TJ = TMIN to TMAXLM4041CEM3
LM4041QCEM3
8
LM4041DEM3,
LM4041QDEM3,
LM4041EEM3,
LM4041QEEM3
10
ZRReverse dynamic impedanceIR = 1mA, f = 120Hz,
IAC= 0.1 IR
TA = TJ = 25°C0.5Ω
TA = TJ = TMIN to TMAXLM4041CEM3
LM4041QCEM3
1.5
LM4041DEM3,
LM4041QDEM3,
LM4041EEM3,
LM4041QEEM3
2
eNNoise voltageIR = 100μA
10Hz ≤ f ≤ 10kHz
20μVrms
ΔVRLong-term stability
(non-cumulative)
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100μA
120ppm
VHYSTThermal hysteresis(5)ΔT = −40°C to +125°C0.08%
Limits are 100% production tested at 25°C. Limits over temperature are made sure through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.
Typical values are at TJ = 25°C and represent most likely parametric norm.
The over temperature limit for reverse breakdown voltage tolerance is defined as the room temperature reverse breakdown voltage tolerance ±[(ΔVR↱ΔT)(max ΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25 °C to TMAX or TMIN, and VR is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where max ΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100°C is shown below:
B-grade: ±1.2% = ±0.2% ±100ppm/°C × 100°C
C-grade: ±1.5% = ±0.5% ±100ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150ppm/°C × 100°C
E-grade: ±4.5% = ±2.0% ±150ppm/°C × 100°C
Therefore, as an example, the A-grade LM4041-NLM4041-N-Q1 1.2 has an over-temperature reverse breakdown voltage tolerance of ±1.2 V × 0.75% = ±9.2mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature –40°C and the +25°C measurement after cycling to temperature +125°C.