SLASFC6A August   2024  – August 2025 TAS2120

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Device Functional Modes
      1. 6.3.1 Operational Modes
        1. 6.3.1.1 Hardware Shutdown
        2. 6.3.1.2 Hardware Config Modes
        3. 6.3.1.3 Software Power Modes Control and Software Reset
        4. 6.3.1.4 Efficiency and power saving modes
          1. 6.3.1.4.1 Noise Gate
          2. 6.3.1.4.2 Music Efficiency Mode
          3. 6.3.1.4.3 VDD Y-bridge
          4. 6.3.1.4.4 Class-H Boost
        5. 6.3.1.5 2S Battery Mode
        6. 6.3.1.6 External PVDD Mode
      2. 6.3.2 Faults and Status
        1. 6.3.2.1 Interrupt generation and clearing
    4. 6.4 Feature Description
      1. 6.4.1  PurePath™ Console 3 Software
      2. 6.4.2  Playback Signal Path
        1. 6.4.2.1 Digital Volume Control and Amplifier Output Level
        2. 6.4.2.2 High Pass Filter
        3. 6.4.2.3 Class-D Amplifier
        4. 6.4.2.4 Supply Tracking Limiters with Brown Out Prevention
          1. 6.4.2.4.1 Voltage Limiter and Clipping protection
        5. 6.4.2.5 Tone Generator
      3. 6.4.3  Digital Audio Serial Interface
        1. 6.4.3.1 Digital Loopback
      4. 6.4.4  Internal Boost
      5. 6.4.5  Boost Share
      6. 6.4.6  External Class-H Boost Controller
      7. 6.4.7  Supply Voltage Monitors
      8. 6.4.8  Thermal Protection
      9. 6.4.9  Clocks and PLL
        1. 6.4.9.1 Auto clock based wakeup and clock errors
      10. 6.4.10 Digital IO pins
    5. 6.5 Programming
      1. 6.5.1 I2C Control Interface
      2. 6.5.2 I2C Address Selection
      3. 6.5.3 General I2C Operation
      4. 6.5.4 I2C Single-Byte and Multiple-Byte Transfers
      5. 6.5.5 I2C Single-Byte Write
      6. 6.5.6 I2C Multiple-Byte Write
      7. 6.5.7 I2C Single-Byte Read
      8. 6.5.8 I2C Multiple-Byte Read
  8. Register Maps
    1. 7.1  PAGE 0 Registers
    2. 7.2  PAGE 1 Registers
    3. 7.3  PAGE 2 Registers
    4. 7.4  PAGE 3 Registers
    5. 7.5  PAGE 4 Registers
    6. 7.6  PAGE 5 Registers
    7. 7.7  PAGE 6 Registers
    8. 7.8  PAGE 7 Registers
    9. 7.9  PAGE 8 Registers
    10. 7.10 BOOK100 PAGE9 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Mono/Stereo Configuration
        2. 8.2.2.2 Boost Converter Passive Devices
        3. 8.2.2.3 EMI Passive Devices
        4. 8.2.2.4 Miscellaneous Passive Devices
      3. 8.2.3 Application Performance Plots
    3. 8.3 What to Do and What Not to Do
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

EMI Passive Devices

The TAS2120 supports edge-rate control to minimize EMI, but the system designer may want to include passive devices on the Class-D output for further reduction in EMI . These passive devices that are labeled L2, L3, C10 and C11 in Section 8.2. If C10 and C11 are used, L2 and L3 must also be installed, and C10 and C11 must be placed after L2 and L3 respectively to maintain the stability of the output stage.

The component value selection for the EMI filters depends on the application need on the frequency band that needs to be suppressed using these filters. Higher cutoff frequency helps in reducing the BOM size and reduces the switching power loss associated with the filters. Application should select the highest cutoff frequency filter which will meet the system's frequency suppression target to get better efficiency performance.

The DC resistance of the inductors or ferrite beads used in the EMI filters also plays a critical role in system efficiency. Lower resistance reduces power loss and helps in improving overall system efficiency. Based on available board space, smallest DC resistance components which meet the application needs will give better efficiency performance.