JAJU484A January   2018  – May 2025 ISOM8610

 

  1.   1
  2.   説明
  3.   リソース
  4.   特長
  5.   アプリケーション
  6.   6
  7. 1システムの説明
    1. 1.1 主なシステム仕様
  8. 2システム概要
    1. 2.1 ブロック図
    2. 2.2 主な使用製品
      1. 2.2.1 ISO121x
      2. 2.2.2 SN74LV165A
      3. 2.2.3 SN74LVC1GU04
      4. 2.2.4 TVS3300
      5. 2.2.5 ISOM8600
    3. 2.3 システム設計理論
      1. 2.3.1 デジタル入力段
      2. 2.3.2 ワイヤ破損検出
        1. 2.3.2.1 ケース 1:ワイヤの損傷がなく、入力状態「1」
        2. 2.3.2.2 ケース 2:ワイヤの損傷がなく、入力状態「0」
        3. 2.3.2.3 ケース 3:破損したワイヤ
      3. 2.3.3 デジタル出力の読み出し
  9. 3ハードウェア、ソフトウェア、テスト要件、テスト結果
    1. 3.1 必要なハードウェアとソフトウェア
      1. 3.1.1 ハードウェア
      2. 3.1.2 ソフトウェア
    2. 3.2 テストと結果
      1. 3.2.1 テスト設定
      2. 3.2.2 テスト結果
        1. 3.2.2.1 グループチャネル 構成
        2. 3.2.2.2 シングルチャネル構成
      3. 3.2.3 まとめ
  10. 4デザイン ファイル
    1. 4.1 回路図
    2. 4.2 部品表 (BOM)
    3. 4.3 PCB レイアウトに関する推奨事項
      1. 4.3.1 レイアウト プリント
    4. 4.4 Altium プロジェクト
    5. 4.5 ガーバー ファイル
    6. 4.6 アセンブリの図面
  11. 5ソフトウェア ファイル
  12. 6関連資料
    1. 6.1 商標
  13. 7著者について
    1. 7.1 謝辞
  14. 8改訂履歴

ケース 1:ワイヤの損傷がなく、入力状態「1」

ワイヤインが無傷で IN が「1」の場合、OUT の出力は「1」になります。Break FGND (t1) が Low に切り替わると、光スイッチ (t2) の遅延後に、 フォトカプラ エミュレータスイッチがディスエーブルになります。その後、OUT は「0」に切り替わります。Break FGND が再び High に切り替わると、OUT は再度「1」に切り替わり、光スイッチの遅延を加えます。

一般的に、このユースケースは最も興味深いものです。OUT が「1」の場合、ユーザーはワイヤーが接続されていることをすでに知っているからです。

TIDA-01509 損傷のないワイヤと IN = 24V による破損ワイヤ検出図 2-8 損傷のないワイヤと IN = 24V による破損ワイヤ検出