SLAU966 February 2025 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1 , MSPM0C1105 , MSPM0C1106 , MSPM0C1106-Q1 , MSPM0G1106 , MSPM0G1107 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , MSPM0H3216 , MSPM0L1105 , MSPM0L1106 , MSPM0L1116 , MSPM0L1117 , MSPM0L1227 , MSPM0L1227-Q1 , MSPM0L1228 , MSPM0L1228-Q1 , MSPM0L1303 , MSPM0L1304 , MSPM0L1304-Q1 , MSPM0L1305 , MSPM0L1305-Q1 , MSPM0L1306 , MSPM0L1306-Q1 , MSPM0L1343 , MSPM0L1344 , MSPM0L1345 , MSPM0L1346 , MSPM0L2228
The MSP430™ MCUs have nearly 30 years of history as TI's classic microcontroller. The latest generation introduces the MSPM0 family. MSPM0 microcontrollers (MCUs) are part of the MSP highly-integrated ultra-low-power 32-bit MCU family based on the enhanced Arm Cortex-M0+ 32-bit core platform. These cost-optimized MCUs offer high-performance analog peripheral integration, support extended temperature ranges, and offer small footprint packages. The TI MSPM0 family of low-power MCUs consists of devices with varying degrees of analog and digital integration, allowing engineers to find the MCU that meets their project's needs. The MSPM0 MCU family combines the Arm Cortex-M0+ platform with ultra-low-power system architecture, allowing system designers to increase performance while reducing energy consumption.
MSPM0 MCUs offer a competitive alternative to NXP's M0 MCUs. This document compares device features and ecosystems to assist with migration from these NXP M0 MCUs to TI MSPM0 MCUs.