SLLSFZ8 November   2025 MCF8329HS-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Three Phase BLDC Gate Drivers
      2. 7.3.2  Gate Drive Architecture
        1. 7.3.2.1 Dead time and Cross Conduction Prevention
      3. 7.3.3  AVDD Linear Voltage Regulator
      4. 7.3.4  Low-Side Current Sense Amplifier
      5. 7.3.5  Device Interface Modes
        1. 7.3.5.1 Interface - Control and Monitoring
        2. 7.3.5.2 I2C Interface
      6. 7.3.6  Motor Control Input Options
        1. 7.3.6.1 Analog-Mode Motor Control
        2. 7.3.6.2 PWM-Mode Motor Control
        3. 7.3.6.3 Frequency-Mode Motor Control
        4. 7.3.6.4 I2C based Motor Control
        5. 7.3.6.5 Input Control Signal Profiles
          1. 7.3.6.5.1 Linear Control Profiles
          2. 7.3.6.5.2 Staircase Control Profiles
          3. 7.3.6.5.3 Forward-Reverse Profiles
          4. 7.3.6.5.4 Multi-Reference Mode Operation
          5. 7.3.6.5.5 Input Reference Transfer Function without Profiler
      7. 7.3.7  Bootstrap Capacitor Initial Charging
      8. 7.3.8  Starting the Motor Under Different Initial Conditions
        1. 7.3.8.1 Case 1 – Motor is Stationary
        2. 7.3.8.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 7.3.8.3 Case 3 – Motor is Spinning in the Reverse Direction
      9. 7.3.9  Motor Start Sequence (MSS)
        1. 7.3.9.1 Initial Speed Detect (ISD)
        2. 7.3.9.2 Motor Resynchronization
        3. 7.3.9.3 Reverse Drive
          1. 7.3.9.3.1 Reverse Drive Tuning
        4. 7.3.9.4 Motor Start-up
          1. 7.3.9.4.1 Align
          2. 7.3.9.4.2 Double Align
          3. 7.3.9.4.3 Initial Position Detection (IPD)
            1. 7.3.9.4.3.1 IPD Operation
            2. 7.3.9.4.3.2 IPD Release
            3. 7.3.9.4.3.3 IPD Advance Angle
          4. 7.3.9.4.4 Slow First Cycle Startup
          5. 7.3.9.4.5 Open Loop
          6. 7.3.9.4.6 Transition from Open to Closed Loop
      10. 7.3.10 Closed Loop Operation
        1. 7.3.10.1 Closed loop accelerate
        2. 7.3.10.2 Speed PI Control
        3. 7.3.10.3 Current PI Control
        4. 7.3.10.4 Overmodulation
        5. 7.3.10.5 Power Loop
        6. 7.3.10.6 Modulation Index Control
        7. 7.3.10.7 Motor Speed Limit
        8. 7.3.10.8 Input DC Power Limit
      11. 7.3.11 Maximum Torque Per Ampere (MTPA) Control
      12. 7.3.12 Flux Weakening Control
      13. 7.3.13 Motor Parameters
        1. 7.3.13.1 Motor Resistance
        2. 7.3.13.2 Motor Inductance
        3. 7.3.13.3 Motor Back-EMF constant
      14. 7.3.14 Motor Parameter Extraction Tool (MPET)
      15. 7.3.15 Single Hall Sensor Operation
      16. 7.3.16 Anti-Voltage Surge (AVS)
      17. 7.3.17 Active Braking
      18. 7.3.18 Output PWM Switching Frequency
      19. 7.3.19 Dead Time Compensation
      20. 7.3.20 Voltage Sense Scaling
      21. 7.3.21 Motor Stop Options
        1. 7.3.21.1 Coast (Hi-Z) Mode
        2. 7.3.21.2 Recirculation Mode
        3. 7.3.21.3 Low-Side Braking
        4. 7.3.21.4 Active Spin-Down
      22. 7.3.22 FG Configuration
        1. 7.3.22.1 FG Output Frequency
        2. 7.3.22.2 FG in Open-Loop
        3. 7.3.22.3 FG During Motor Stop
        4. 7.3.22.4 FG Behavior During Fault
      23. 7.3.23 Protections
        1. 7.3.23.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 7.3.23.2  AVDD Power on Reset (AVDD_POR)
        3. 7.3.23.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.23.4  BST Undervoltage Lockout (BST_UV)
        5. 7.3.23.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 7.3.23.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 7.3.23.7  Thermal Shutdown (OTSD)
        8. 7.3.23.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 7.3.23.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xb or 010b)
          2. 7.3.23.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 011b or 10xb)
          3. 7.3.23.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 110b)
          4. 7.3.23.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE = 111b)
        9. 7.3.23.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 7.3.23.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xb or 010b)
          2. 7.3.23.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 011b or 10xb)
          3. 7.3.23.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 110b)
          4. 7.3.23.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 111b)
        10. 7.3.23.10 Motor Lock (MTR_LCK)
          1. 7.3.23.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xb or 010b)
          2. 7.3.23.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE = 011b or 10xb)
          3. 7.3.23.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 110b)
          4. 7.3.23.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 111b)
        11. 7.3.23.11 Motor Lock Detection
          1. 7.3.23.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 7.3.23.11.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 7.3.23.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 7.3.23.12 MPET Faults
        13. 7.3.23.13 IPD Faults
        14. 7.3.23.14 Dry Run Detection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Standby Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT)
    5. 7.5 External Interface
      1. 7.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 7.5.2 Oscillator Source
      3. 7.5.3 External Watchdog with MCU Reset
    6. 7.6 EEPROM access and I2C interface
      1. 7.6.1 EEPROM Access
        1. 7.6.1.1 EEPROM Write
        2. 7.6.1.2 EEPROM Read
        3. 7.6.1.3 EEPROM Security
      2. 7.6.2 I2C Serial Interface
        1. 7.6.2.1 I2C Data Word
        2. 7.6.2.2 I2C Write Operation
        3. 7.6.2.3 I2C Read Operation
        4. 7.6.2.4 Examples of I2C Communication Protocol Packets
        5. 7.6.2.5 Internal Buffers
        6. 7.6.2.6 CRC Byte Calculation
  9. EEPROM (Non-Volatile) Register Map
    1. 8.1 Algorithm_Configuration Registers
    2. 8.2 Fault_Configuration Registers
    3. 8.3 Hardware_Configuration Registers
    4. 8.4 Internal_Algorithm_Configuration Registers
  10. RAM (Volatile) Register Map
    1. 9.1 Fault_Status Registers
    2. 9.2 System_Status Registers
    3. 9.3 Algorithm_Control Registers
    4. 9.4 Device_Control Registers
    5. 9.5 Algorithm_Variables Registers
  11. 10Typical Applications
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3.      Gate Drive Current
      4.      Gate Resistor Selection
      5.      System Considerations in High Power Designs
      6.      Capacitor Voltage Ratings
      7.      External Power Stage Components
    3. 10.3 Power Supply Recommendations
      1. 10.3.1 Bulk Capacitance
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
      3. 10.4.3 Thermal Considerations
        1. 10.4.3.1 Power Dissipation
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Electrical Characteristics

4.5 V ≤ VPVDD ≤ 60 V, –40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for TA = 25°C, VPVDD = 12 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLIES (PVDD, GVDD, AVDD, DVDD)
IPVDDQ PVDD sleep mode current VPVDD = 12V, VSPEED/WAKE = 0, TA = 25 °C 3 5 µA
VSPEED/WAKE = 0, TA = 125 °C 3.5 6 µA
IPVDDS PVDD standby mode current VPVDD = 12 V,  VSPEED/WAKE < VEN_SB, DRVOFF = LOW, TA = 25 °C, CLOCK_FREQUENCY = 0x0 28 30 mA
VSPEED/WAKE < VEN_SBDRVOFF = LOW, CLOCK_FREQUENCY = 0x0 28 30 mA
IPVDDS PVDD standby mode current VPVDD = 12 V,  VSPEED/WAKE < VEN_SB, DRVOFF = LOW, TA = 25 °C, CLOCK_FREQUENCY = 0x1 24 26 mA
VSPEED/WAKE < VEN_SBDRVOFF = LOW, CLOCK_FREQUENCY = 0x1 24 26 mA
IPVDDS PVDD standby mode current VPVDD = 12 V,  VSPEED/WAKE < VEN_SB, DRVOFF = LOW, TA = 25 °C, CLOCK_FREQUENCY = 0x2 20 22 mA
VSPEED/WAKE < VEN_SBDRVOFF = LOW, CLOCK_FREQUENCY = 0x2 20 22 mA
IPVDD PVDD active mode current VPVDD = 12 V, VSPEED/WAKE > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), TJ = 25 °C, No FETs and motor connected, CLOCK_FREQUENCY = 0x0 28 30 mA
VSPEED/WAKE > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), No FETs and motor connected, CLOCK_FREQUENCY = 0x0 28 30 mA
IPVDD PVDD active mode current VPVDD = 12 V, VSPEED/WAKE > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), TJ = 25 °C, No FETs and motor connected, CLOCK_FREQUENCY = 0x1 24 26 mA
VSPEED/WAKE > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), No FETs and motor connected, CLOCK_FREQUENCY = 0x1 24 26 mA
IPVDD PVDD active mode current VPVDD = 12 V, VSPEED/WAKE > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), TJ = 25 °C, No FETs and motor connected, CLOCK_FREQUENCY = 0x2 20 22 mA
VSPEED/WAKE > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), No FETs and motor connected, CLOCK_FREQUENCY = 0x2 20 22 mA
ILBSx Bootstrap pin leakage current VBSTx = VSHx = 60V, VGVDD = 0V, VSPEED/WAKE = LOW 5 10 16 µA
ILBS_TRAN Bootstrap pin active mode transient leakage current  GLx = GHx = Switching at 20kHz, No FETs connected 60 115 300 µA
VGVDD_RT GVDD Gate driver regulator voltage (Room Temperature) VPVDD ≥ 40 V, IGS  = 10 mA, TJ= 25°C 11.8 13 15 V
22 V ≤VPVDD ≤ 40 V, IGS  = 30 mA, TJ= 25°C 11.8 13 15 V
8 V ≤VPVDD ≤ 22 V, IGS  = 30 mA, TJ= 25°C 11.8 13 15 V
6.75 V ≤VPVDD ≤ 8 V, IGS  = 10 mA, TJ= 25°C 11.8 13 14.5 V
4.5 V ≤VPVDD ≤ 6.75 V, IGS  = 10 mA, TJ= 25°C 2*VPVDD - 1 13.5 V
VGVDD GVDD Gate driver regulator voltage  VPVDD ≥ 40 V, IGS  = 10 mA 11.5 15.5 V
22 V ≤VPVDD ≤ 40 V, IGS  = 30 mA 11.5 15.5 V
8 V ≤VPVDD ≤ 22 V; IGS  = 30 mA 11.5 15.5 V
6.75 V ≤VPVDD ≤ 8 V, IGS  = 10 mA 11.5 14.5 V
4.5 V ≤VPVDD ≤ 6.75 V, IGS  = 10 mA 2*VPVDD - 1.4 13.5 V
VAVDD_RT AVDD Analog regulator voltage (Room Temperature), AVDD_VOL_SEL = 0b VPVDD ≥ 6 V, 0 mA ≤ IAVDD ≤ 50 mA, TJ= 25°C 3.2 3.3 3.34 V
4.5  ≤ VPVDD < 6 V, 0 mA ≤ IAVDD ≤ 50 mA, TJ= 25°C 3.13 3.3 3.46 V
VAVDD_RT AVDD Analog regulator voltage (Room Temperature), AVDD_VOL_SEL = 1b VPVDD ≥ 6 V, 0 mA ≤ IAVDD ≤ 50 mA, TJ= 25°C 4.85 5 5.15 V
VAVDD AVDD Analog regulator voltage, AVDD_VOL_SEL = 0b VPVDD ≥ 6 V, 0 mA ≤ IAVDD ≤ 50 mA 3.2 3.3 3.4 V
4.5  ≤ VPVDD < 6 V, 0 mA ≤ IAVDD ≤ 50 mA 3.125 3.3 3.5 V
VAVDD AVDD Analog regulator voltage, AVDD_VOL_SEL = 1b VPVDD ≥ 6 V, 0 mA ≤ IAVDD ≤ 50 mA 4.85 5 5.15 V
VDVDD Digital regulator voltage 1.52 1.62 1.7 V
GATE DRIVERS (GHx, GLx, SHx, SLx)
VGSHx_LO High-side gate drive low level voltage IGHx = -100 mA; VGVDD = 12V; No FETs connected 0.05 0.11 0.24 V
VGSHx_HI High-side gate drive high level voltage (VBSTx - VGHx) IGHx = 100 mA; VGVDD = 12V; No FETs connected 0.28 0.44 0.82 V
VGSLx_LO Low-side gate drive low level voltage IGLx = -100 mA; VGVDD = 12V; No FETs connected 0.05 0.11 0.27 V
VGSLx_HI Low-side gate drive high level voltage (VGVDD - VGLx) IGLx = 100 mA; VGVDD = 12V; No FETs connected 0.28 0.44 0.82 V
RDS(ON)_PU_HS High-side pullup switch resistance IGHx = 100 mA; VGVDD= 12V 2.7 4.5 8.4
RDS(ON)_PD_HS High-side pulldown switch resistance IGHx = 100 mA; VGVDD = 12V 0.5 1.1 2.4
RDS(ON)_PU_LS Low-side pullup switch resistance IGLx = 100 mA; VGVDD = 12V 2.7 4.5 8.3
RDS(ON)_PD_LS Low-side pulldown switch resistance IGLx = 100 mA; VGVDD = 12V 0.5 1.1 2.8
IDRIVEP_HS High-side peak source gate current VGSHx = 12V 550 1000 1575 mA
IDRIVEN_HS High-side peak sink gate current VGSHx = 0V 1150 2000 2675 mA
IDRIVEP_LS Low-side peak source gate current VGSLx = 12V 550 1000 1575 mA
IDRIVEN_LS Low-side peak sink gate current VGSLx = 0V 1150 2000 2675 mA
RPD_LS Low-side passive pull down GLx to LSS 80 100 120 kΩ
RPDSA_HS High-side semiactive pull down GHx to SHx, VGSHx = 2V 8 10 12.5 kΩ
BOOTSTRAP DIODES
VBOOTD Bootstrap diode forward voltage IBOOT = 100 µA 0.8 V
IBOOT = 100 mA 1.6 V
RBOOTD Bootstrap dynamic resistance (ΔVBOOTD/ΔIBOOT) IBOOT = 100 mA and 50 mA 4.5 5.5 9
LOGIC-LEVEL INPUTS (SCL, SDA, SPEED/WAKE, EXT_WD, HALL_IN)
VIL Input logic low voltage AVDD = 3.3V, 5V 0.25*AVDD V
VIH Input logic high voltage AVDD = 3.3V, 5V 0.65*AVDD V
VHYS Input hysteresis 50 500 800 mV
IIL Input logic low current AVDD = 3.3V, 5V -0.15 0.15 µA
IIH Input logic high current AVDD = 3.3V, 5V -0.3 0.1 µA
RPD_SPEED Input pulldown resistance SPEED/WAKE pin To GND 0.6 1 1.4
LOGIC-LEVEL INPUTS (DRVOFF)
VIL Input logic low voltage 0.8 V
VIH Input logic high voltage 2.2 V
VHYS Input hysteresis 200 400 650 mV
IIL Input logic low current Pin Voltage = 0 V -1 0 1 µA
IIH Input logic high current Pin Voltage = 5 V 7 20 35 µA
RPD_DRVOFF Input pulldown resistance DRVOFF To GND 100 200 300
OPEN-DRAIN OUTPUTS (nFAULT, FG, nMCU_RST)
VOL Output logic low voltage IOD =-5 mA 0.4 V
IOZ Output logic high current VOD = 3.3 V 0 0.5 µA
SPEED INPUT - ANALOG MODE
VANA_FS Analog full-speed voltage 2.95 3 3.05 V
VANA_RES Analog voltage resolution 732 μV
SPEED INPUT - PWM MODE
ƒPWM PWM input frequency 0.01 100 kHz
ResPWM PWM input resolution fPWM = 0.01 to 0.35 kHz 11 12 13 bits
fPWM = 0.35 to 2 kHz 12 13 14 bits
fPWM = 2 to 3.5 kHz 11 11.5 12 bits
fPWM = 3.5 to 7 kHz 13 13.5 14 bits
fPWM = 7 to 14 kHz 12 12.5 13 bits
fPWM = 14 to 29.2 kHz 11 11.5 12 bits
fPWM = 29.3 to 60 kHz 10 10.5 11 bits
fPWM = 60 to 95 kHz 8 9 10 bits
SPEED INPUT - FREQUENCY MODE
ƒPWM_FREQ PWM input frequency range Duty cycle = 50% 3 32767 Hz
SLEEP MODE
VEN_SL Analog voltage to enter sleep mode SPEED_MODE = 00b (analog mode) 40 mV
VEX_SL Analog voltage to exit sleep mode 2.6 V
tDET_ANA Time needed to detect wake up signal on SPEED/WAKE pin SPEED_MODE = 00b (analog mode), VSPEED/WAKE > VEX_SL 0.5 1 1.5 μs
tWAKE Wakeup time from sleep mode VSPEED/WAKE > VEX_SL to DVDD voltage available, SPEED_MODE = 00b (analog mode) 3 5 ms
tEX_SL_DR_ANA Time taken to drive motor after exiting from sleep mode SPEED_MODE = 00b (analog mode)
VSPEED/WAKE > VEX_SL, ISD detection disabled
30 ms
tDET_PWM Time needed to detect wake up signal on SPEED pin SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode),
VSPEED/WAKE > VIH
0.5 1 1.5 μs
tWAKE_PWM Wakeup time from sleep mode VSPEED/WAKE > VIH to DVDD voltage available and release nFault, SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode) 3 5 ms
tEX_SL_DR_PWM Time taken to drive motor after wakeup from sleep state SPEED_MODE = 01b (PWM mode)
VSPEED/WAKE > VIH, ISD detection disabled
30 ms
tDET_SL_ANA Time needed to detect sleep command SPEED_MODE = 00b (analog mode)
VSPEED/WAKE < VEN_SL,  SLEEP_ENTRY_TIME = 00b or 01b
0.5 1 2 ms
tDET_SL_PWM Time needed to detect sleep command SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode), VSPEED/WAKE < VIL(PWM mode and Frequency mode), SLEEP_ENTRY_TIME = 00b 0.035 0.05 0.065 ms
SPEED_MODE = 01b (PWM mode),  or 11b (Frequency mode), VSPEED/WAKE < VIL(PWM mode and Frequency mode), SLEEP_ENTRY_TIME = 01b 0.14 0.2 0.26 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode) or 00b (analog mode), VSPEED/WAKE < VIL(PWM mode and Frequency mode), VSPEED/WAKE < VEN_SL (analog mode), SLEEP_ENTRY_TIME = 10b 14 20 26 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode) or 00b (analog mode), VSPEED/WAKE < VIL(PWM mode and Frequency mode), VSPEED/WAKE < VEN_SL (analog mode), SLEEP_ENTRY_TIME = 11b 140 200 260 ms
tEN_SL Time needed to stop driving motor after detecting sleep command VSPEED/WAKE < VEN_SL (analog mode) or VSPEED/WAKE < VIL (PWM and frequency mode) 1 2 ms
STANDBY MODE
tEX_SB_DR_ANA Time taken to drive motor after exiting standby mode SPEED_MODE = 00b (analog mode)
VSPEED > VEN_SB, ISD detection disabled
6 ms
tEX_SB_DR_PWM Time taken to drive motor after exiting standby mode SPEED_MODE = 01b (PWM mode)
VSPEED > VIH, ISD detection disabled
6 ms
tDET_SB_ANA Time needed to detect standby mode SPEED_MODE = 00b (analog mode)
VSPEED < VEN_SB
0.5 1 2 ms
tEN_SB_PWM Time needed to detect standby command SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode),
VSPEED < VIL, SLEEP_ENTRY_TIME = 00b
0.035 0.05 0.065 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode),
VSPEED < VIL, SLEEP_ENTRY_TIME = 01b
0.14 0.2 0.26 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode),
VSPEED < VIL, SLEEP_ENTRY_TIME = 10b
14 20 26 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode),
VSPEED < VIL, SLEEP_ENTRY_TIME = 11b
140 200 260 ms
tEN_SB_DIG Time needed to detect standby mode SPEED_MODE = 10b (I2C mode), SPEED_CMD = 0 1 2 ms
tEN_SB Time needed to stop driving motor after detecting standby command VSPEED < VEN_SL (analog mode) or VSPEED < VIL (PWM mode) or SPEED command = 0 (I2C mode) 1 2 ms
PROTECTION CIRCUITS
VAVDD_UVLO Regulator undervoltage lockout (AVDD-UVLO) Supply rising 2.6 2.7 2.8 V
Supply falling 2.6 2.7 2.8 V
VAVDD_UVLO_HYS Regulator UVLO hysteresis Rising to falling threshold 150 190 240 mV
tAVDD_UVLO_DEG Regulator UVLO deglitch time 5 µs
VDVDD_UVLO Digital regulator undervoltage lockout (DVDD-UVLO) Supply rising 1.2 1.28 1.32 V
VDVDD_UVLO Digital regulator undervoltage lockout (DVDD-UVLO) Supply falling 1.18 1.23 1.3 V
VPVDD_UV PVDD undervoltage lockout threshold VPVDD rising 4.3 4.4 4.5 V
VPVDD falling 4 4.1 4.25
VPVDD_UV_HYS PVDD undervoltagelockout  hysteresis Rising to falling threshold 225 265 325 mV
tPVDD_UV_DG PVDD undervoltage deglitch time 10 20 30 µs
VAVDD_POR AVDD supply POR threshold AVDD rising 2.7 2.85 3.0 V
AVDD falling 2.5 2.65 2.8
VAVDD_POR_HYS AVDD POR hysteresis Rising to falling threshold 170 200 250 mV
tAVDD_POR_DG AVDD POR deglitch time 7 12 22 µs
VGVDD_UV GVDD undervoltage threshold VGVDD rising 7.3 7.5 7.8 V
VGVDD falling 6.4 6.7 6.9 V
VGVDD_UV_HYS GVDD undervoltage hysteresis Rising to falling threshold 800 900 1000 mV
tGVDD_UV_DG GVDD undervoltage deglitch time 5 10 15 µs
VBST_UV Bootstrap undervoltage threshold VBSTx- VSHx; VBSTx rising 3.9 4.45 5 V
VBSTx- VSHx; VBSTx falling 3.7 4.2 4.8 V
VBST_UV_HYS Bootstrap undervoltage hysteresis Rising to falling threshold 150 220 285 mV
tBST_UV_DG Bootstrap undervoltage deglitch time 2 4 6 µs
VDS_LVL VDS overcurrent protection threshold Reference  SEL_VDS_LVL = 0000 0.04 0.06 0.08 V
SEL_VDS_LVL = 0001 0.09 0.12 0.15 V
SEL_VDS_LVL = 0010 0.14 0.18 0.23 V
SEL_VDS_LVL = 0011 0.19 0.24 0.29 V
SEL_VDS_LVL = 0100 0.23 0.3 0.37 V
SEL_VDS_LVL = 0101 0.3 0.36 0.43 V
SEL_VDS_LVL = 0110 0.35 0.42 0.5 V
SEL_VDS_LVL = 0111 0.4 0.48 0.56 V
SEL_VDS_LVL = 1000 0.5 0.6 0.7 V
SEL_VDS_LVL = 1001 0.65 0.8 0.9 V
SEL_VDS_LVL = 1010 0.85 1 1.15 V
SEL_VDS_LVL = 1011 1 1.2 1.34 V
SEL_VDS_LVL = 1100 1.2 1.4 1.58 V
SEL_VDS_LVL = 1101 1.4 1.6 1.78 V
SEL_VDS_LVL = 1110 1.6 1.8 2 V
SEL_VDS_LVL = 1111 1.7 2 2.2 V
VSENSE_LVL VSENSE overcurrent protection threshold LSS to GND pin = 0.5V 0.48 0.5 0.52 V
tDS_BLK VDS overcurrent protection blanking time  0.5 1 2.7 µs
tDS_DG VDS and VSENSE overcurrent protection deglitch time  1.5 3 5 µs
tSD_SINK_DIG DRVOFF peak sink current duration 3 5 7 µs
tSD_DIG DRVOFF digital shutdown delay 0.5 1.5 2.2 µs
tSD DRVOFF analog shutdown delay 7 14 21 µs
TOTSD Thermal shutdown temperature TJ rising 160 170 187 °C
THYS Thermal shutdown hysteresis 16 20 23 °C
I2C Serial Interface
VI2C_L LOW-level input voltage -0.5 0.3*AVDD V
VI2C_H HIGH-level input voltage 0.7*AVDD 5.5 V
VI2C_HYS Hysterisis 0.05*AVDD V
VI2C_OL LOW-level output voltage open-drain at 2mA sink current 0 0.4 V
II2C_OL LOW-level output current VI2C_OL = 0.6V 6 mA
II2C_IL Input current on SDA and SCL -10(1) 10(1) µA
Ci Capacitance for SDA and SCL 10 pF
tof Output fall time from VI2C_H(min) to VI2C_L(max) Standard Mode 250(2) ns
Fast Mode 250(2) ns
tSP Pulse width of spikes that must be suppressed by the input filter Fast Mode 0 50(3) ns
EEPROM
EEProg Programing voltage 1.35 1.5 1.65 V
EERET Retention TA = 25 ℃ 100 Years
TJ = -40 to 150 ℃ 10 Years
EEEND Endurance TJ = -40 to 150 ℃ 1000 Cycles
TJ = -40 to 85 ℃ 20000 Cycles
If AVDD is switched off, I/O pins must not obstruct the SDA and SCL lines.
The maximum tf for the SDA and SCL bus lines (300 ns) is longer than the specified maximum tof for the output stages (250 ns). This allows series protection resistors (Rs) to be connected between the SDA/SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.
Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns