SNVSCO1 November   2025 LM5126A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Device Configuration (CFG0-pin, CFG1-pin, CFG2-pin )
      2. 6.3.2  Device Enable/Disable (UVLO/EN)
      3. 6.3.3  Dual Device Operation
      4. 6.3.4  Switching Frequency and Synchronization (SYNCIN)
      5. 6.3.5  Dual Random Spread Spectrum (DRSS)
      6. 6.3.6  Operation Modes (BYPASS, DEM, FPWM)
      7. 6.3.7  VCC Regulator, BIAS (BIAS-pin, VCC-pin)
      8. 6.3.8  Soft Start (SS-pin)
      9. 6.3.9  VOUT Programming (VOUT, ATRK, DTRK)
      10. 6.3.10 Protections
        1. 6.3.10.1 VOUT Overvoltage Protection (OVP)
        2. 6.3.10.2 Thermal Shutdown (TSD)
      11. 6.3.11 Power-Good Indicator (PGOOD-pin)
      12. 6.3.12 Slope Compensation (CSP, CSN)
      13. 6.3.13 Current Sense Setting and Switch Peak Current Limit (CSP, CSN)
      14. 6.3.14 Input Current Limit and Monitoring (ILIM, IMON, DLY)
      15. 6.3.15 Maximum Duty Cycle and Minimum Controllable On-time Limits
      16. 6.3.16 Signal Deglitch Overview
      17. 6.3.17 MOSFET Drivers, Integrated Boot Diode, and Hiccup Mode Fault Protection (LO, HO, HB-pin)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown State
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Feedback Compensation
      2. 7.1.2 3 Phase Operation
      3. 7.1.3 Non-synchronous Application
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1  Determine the Total Phase Number
        2. 7.2.2.2  Determining the Duty Cycle
        3. 7.2.2.3  Timing Resistor RT
        4. 7.2.2.4  Inductor Selection Lm
        5. 7.2.2.5  Current Sense Resistor Rcs
        6. 7.2.2.6  Current Sense Filter RCSFP, RCSFN, CCS
        7. 7.2.2.7  Low-Side Power Switch QL
        8. 7.2.2.8  High-Side Power Switch QH
        9. 7.2.2.9  Snubber Components
        10. 7.2.2.10 Vout Programming
        11. 7.2.2.11 Input Current Limit (ILIM/IMON)
        12. 7.2.2.12 UVLO Divider
        13. 7.2.2.13 Soft Start
        14. 7.2.2.14 CFG Settings
        15. 7.2.2.15 Output Capacitor Cout
        16. 7.2.2.16 Input Capacitor Cin
        17. 7.2.2.17 Bootstrap Capacitor
        18. 7.2.2.18 VCC Capacitor CVCC
        19. 7.2.2.19 BIAS Capacitor
        20. 7.2.2.20 VOUT Capacitor
        21. 7.2.2.21 Loop Compensation
      3. 7.2.3 Application Curves
        1. 7.2.3.1 Efficiency
        2. 7.2.3.2 Steady State Waveforms
        3. 7.2.3.3 Step Load Response
        4. 7.2.3.4 AC Loop Response Curve
        5. 7.2.3.5 Thermal Performance
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Input Current Limit (ILIM/IMON)

The transient power is high in audio applications. For this application 500W is selected as peak output power. But the average power is typically much lower than the peak power. 150W is selected as average power. With proper ILIM/IMON setting, the average input current is limited to less than 150W while allowing 500W peak for 100ms. When the average current loop is triggered, VOUT drops till the input and output power is balanced.

The per phase input current at average output power and typical input voltage is found as,

Equation 65. Iavg=Pavg_total1×η×Vin_typ=11.0A

14A is selected as the average input current limit.

Equation 66. Ilim=14A

The current out of ILIM/IMON is found as,

Equation 67. IMON_lim=Rcs×Ilim×GIMON+IOFFSET=1.5mΩ×14A×0.333mA/V+4μA=11μA

RILIM is calculated as:

Equation 68. RIMON=VILIMIMON=1V11μA=90.9kΩ

A standard value of 90.9kΩ is chosen for RIMON.

As shown in Figure 7-9, use CIMON and Rc to create a proper delay before the average current loop is triggered.

LM5126A-Q1 ILIM/IMON Pin ConfigurationFigure 7-9 ILIM/IMON Pin Configuration

In this application 100ms delay at twice rated power is required.

At zero load current out of ILIM/IMON is found as,

Equation 69. IMON_0A=IOFFSET=4μA

The ILIM/IMON voltage at zero load is calculated as,

Equation 70. VIMON_0A=RIMON×IMON_0A=0.36V

At twice rated power, current out of ILIM/IMON is found as,

Equation 71. IMON_tr=Rcs×2×Ilim×GIMON+IOFFSET=1.5mΩ×28A×0.333mA/V+4μA=18μA

CIMON is determined by,

Equation 72. CIMON=tdelayRIMON×lnRIMON×IMON_tr-VIMON_0ARIMON×IMON_tr-VILIM=1.6μF

A standard value of 2.2μF is chosen for CIMON.

Rc is determined by,

Equation 73. Rc=120π×CIMON=7.2k

A standard value of 6.04kΩ is chosen for Rc.