TIDUF63 December   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 PV or Battery Input With DC/DC Converter
    2. 1.2 Isolation and CLLLC Converter
    3. 1.3 DC/AC Converter
    4. 1.4 Key System Specifications
  8. 2System Design Theory
    1. 2.1 Boost Converter Design
    2. 2.2 MPPT Operation
    3. 2.3 CLLLC Converter Design
      1. 2.3.1 Achieving Zero Voltage Switching (ZVS)
      2. 2.3.2 Resonant Tank Design
    4. 2.4 DC/AC Converter Design
  9. 3System Overview
    1. 3.1 Block Diagram
    2. 3.2 Design Considerations
      1. 3.2.1 DC/DC Converter
        1. 3.2.1.1 Input Current and Voltage Senses and MPPT
        2. 3.2.1.2 Inrush Current Limit
      2. 3.2.2 CLLLC Converter
        1. 3.2.2.1 Low-Voltage Side
        2. 3.2.2.2 High-Voltage Side
      3. 3.2.3 DC/AC Converter
        1. 3.2.3.1 Active Components Selection
          1. 3.2.3.1.1 High-Frequency FETs: GaN FETs
          2. 3.2.3.1.2 Isolated Power Supply
          3. 3.2.3.1.3 Low-Frequency FETs
        2. 3.2.3.2 Passive Components Selection
          1. 3.2.3.2.1 Boost Inductor Selection
          2. 3.2.3.2.2 Cx Capacitance Selection
          3. 3.2.3.2.3 EMI Filter Design
          4. 3.2.3.2.4 DC-Link Output Capacitance
        3. 3.2.3.3 Voltage and Current Measurements
    3. 3.3 Highlighted Products
      1. 3.3.1  TMDSCNCD280039C - TMS320F280039C Evaluation Module C2000™ MCU controlCARD™
      2. 3.3.2  LMG3522R050 - 650-V 50-mΩ GaN FET With Integrated Driver
      3. 3.3.3  LMG2100R044 - 100-V, 35-A GaN Half-Bridge Power Stage
      4. 3.3.4  TMCS1123 - Precision Hall-Effect Current Sensor
      5. 3.3.5  AMC1302 - Precision, ±50-mV Input, Reinforced Isolated Amplifier
      6. 3.3.6  AMC3330 - Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
      7. 3.3.7  AMC1311 - High-Impedance, 2-V Input, Reinforced Isolated Amplifier
      8. 3.3.8  ISO6741 - General-Purpose Reinforced Quad-Channel Digital Isolators with Robust EMC
      9. 3.3.9  UCC21540 - Reinforced Isolation Dual-Channel Gate Driver
      10. 3.3.10 LM5164 - 100-V Input, 1-A Synchronous Buck DC/DC Converter with Ultra-low IQ
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
      1. 4.2.1 DC/DC Board
      2. 4.2.2 DC/AC Board
    3. 4.3 Test Results
      1. 4.3.1 Input DC/DC Boost Results
      2. 4.3.2 CLLLC Results
      3. 4.3.3 DC/AC Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

DC/AC Converter Design

The inductor plays an important role in system efficiency, current ripple, and overall size. The inductance value is calculated based on the input voltage, output voltage, and worst-case ripple. The inductance value of a totem-pole DC/AC can be calculated with Equation 13:

Equation 13. L     D × ( 1 - D ) I p k - p k × f s w × V O U T

where

  • D is the duty cycle
  • fSW is the switching frequency
  • VOUT is the DC link voltage
  • Ipk-pk was calculated as shown in Equation 14
Equation 14. I p k - p k = K r i p p l e × P n o m V O U T

Worst-case current ripple is when the duty cycle is equal to 50%

DC link capacitor voltage ripple frequency is double the line frequency. The required DC link capacitance can be calculated as shown in Equation 15:

Equation 15. C O U T P O U T 2 × V O U T × π × f l i n e × V r i p p l e

where

  • VOUT is the DC link nominal voltage
  • Fline is the frequency of the grid
  • POUT is the maximum power
  • Vripple is the peak to peak voltage ripple.