TIDUF63 December   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 PV or Battery Input With DC/DC Converter
    2. 1.2 Isolation and CLLLC Converter
    3. 1.3 DC/AC Converter
    4. 1.4 Key System Specifications
  8. 2System Design Theory
    1. 2.1 Boost Converter Design
    2. 2.2 MPPT Operation
    3. 2.3 CLLLC Converter Design
      1. 2.3.1 Achieving Zero Voltage Switching (ZVS)
      2. 2.3.2 Resonant Tank Design
    4. 2.4 DC/AC Converter Design
  9. 3System Overview
    1. 3.1 Block Diagram
    2. 3.2 Design Considerations
      1. 3.2.1 DC/DC Converter
        1. 3.2.1.1 Input Current and Voltage Senses and MPPT
        2. 3.2.1.2 Inrush Current Limit
      2. 3.2.2 CLLLC Converter
        1. 3.2.2.1 Low-Voltage Side
        2. 3.2.2.2 High-Voltage Side
      3. 3.2.3 DC/AC Converter
        1. 3.2.3.1 Active Components Selection
          1. 3.2.3.1.1 High-Frequency FETs: GaN FETs
          2. 3.2.3.1.2 Isolated Power Supply
          3. 3.2.3.1.3 Low-Frequency FETs
        2. 3.2.3.2 Passive Components Selection
          1. 3.2.3.2.1 Boost Inductor Selection
          2. 3.2.3.2.2 Cx Capacitance Selection
          3. 3.2.3.2.3 EMI Filter Design
          4. 3.2.3.2.4 DC-Link Output Capacitance
        3. 3.2.3.3 Voltage and Current Measurements
    3. 3.3 Highlighted Products
      1. 3.3.1  TMDSCNCD280039C - TMS320F280039C Evaluation Module C2000™ MCU controlCARD™
      2. 3.3.2  LMG3522R050 - 650-V 50-mΩ GaN FET With Integrated Driver
      3. 3.3.3  LMG2100R044 - 100-V, 35-A GaN Half-Bridge Power Stage
      4. 3.3.4  TMCS1123 - Precision Hall-Effect Current Sensor
      5. 3.3.5  AMC1302 - Precision, ±50-mV Input, Reinforced Isolated Amplifier
      6. 3.3.6  AMC3330 - Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
      7. 3.3.7  AMC1311 - High-Impedance, 2-V Input, Reinforced Isolated Amplifier
      8. 3.3.8  ISO6741 - General-Purpose Reinforced Quad-Channel Digital Isolators with Robust EMC
      9. 3.3.9  UCC21540 - Reinforced Isolation Dual-Channel Gate Driver
      10. 3.3.10 LM5164 - 100-V Input, 1-A Synchronous Buck DC/DC Converter with Ultra-low IQ
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
      1. 4.2.1 DC/DC Board
      2. 4.2.2 DC/AC Board
    3. 4.3 Test Results
      1. 4.3.1 Input DC/DC Boost Results
      2. 4.3.2 CLLLC Results
      3. 4.3.3 DC/AC Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

DC/AC Results

In Figure 4-7, 1.1-kW output power was sourced from 400-V DC link to 230 VAC. Notice that no important current ripple is injected into the resistor.

GUID-20231129-SS0I-FFLK-D53T-3QXMTQLQ0XHK-low.png
C1 - Output voltage, C3 - Output current. Output power - 1.1 kW
Figure 4-7 DC/AC Line Voltage and Current

The voltage of the switching node was measured as shown in Figure 4-8. Observe from the image that no important overvoltage was detected even when the switching was at 80 kV / μs.

GUID-20231129-SS0I-RFPM-H717-G7WGBVP7HGKB-low.png
С1 - Line voltage, C2 - Switching node voltage, C3 - Line current
Figure 4-8 DC/AC Converter Switching Node
Table 4-4 and Figure 4-9 show efficiency of the CLLLC converter from 400-V DC link to 230-VAC output. The table shows that the converter achieves a peak efficiency of 98.9% at 640 W.
Table 4-4 DC/AC Converter Efficiency
OUTPUT POWER 80 W 160 W 320 W 480 W 640 W 800 W 960 W 1280 W 1600 W

Efficiency

97,3%

98,2%

98,7%

98,8%

98,9%

98,8%

98,7%

98,7%

98,7%

GUID-20231129-SS0I-VHWC-LT3B-GNDSKGGCQDWH-low.svg Figure 4-9 DC/AC Converter vs Output Power