TIDUFB1 December   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Control System Design Theory
        1. 2.2.1.1 PWM Modulation
        2. 2.2.1.2 Current Loop Model
        3. 2.2.1.3 DC Bus Regulation Loop
        4. 2.2.1.4 DC Voltage Balance Controller
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F280013x
      2. 2.3.2 UCC5350
      3. 2.3.3 AMC1350
      4. 2.3.4 TMCS1123
      5. 2.3.5 UCC28750
      6. 2.3.6 LM25180
      7. 2.3.7 ISOTMP35
      8. 2.3.8 TLV76133
      9. 2.3.9 TLV9062
    4. 2.4 Hardware Design
      1. 2.4.1  Inductor Design
      2. 2.4.2  Bus Capacitor Selection
      3. 2.4.3  Input AC Voltage Sensing
      4. 2.4.4  Output DCBUS Voltage Sensing
      5. 2.4.5  Auxiliary Power Supply
      6. 2.4.6  Isolated Power Supply
      7. 2.4.7  Inductor Current Sensing
      8. 2.4.8  Gate Driver
      9. 2.4.9  Isolated Temperature Sensing
      10. 2.4.10 Overcurrent, Overvoltage Protection (CMPSS)
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Getting Started Hardware
        1. 3.1.1.1 Board Overview
        2. 3.1.1.2 Test Equipment
    2. 3.2 Software Requirements
      1. 3.2.1 Getting Started GUI
        1. 3.2.1.1 Test Setup
        2. 3.2.1.2 Overview of a GUI Software
        3. 3.2.1.3 Procedures of Test With GUI
      2. 3.2.2 Getting Started Firmware
        1. 3.2.2.1 Opening the Project Inside Code Composer Studio™
        2. 3.2.2.2 Project Structure
        3. 3.2.2.3 Test Setup
        4. 3.2.2.4 Running Project
          1. 3.2.2.4.1 INCR_BUILD 1: Open Loop
            1. 3.2.2.4.1.1 Setting, Building, and Loading the Project
            2. 3.2.2.4.1.2 Setup Debug Environment Windows
            3. 3.2.2.4.1.3 Using Real-Time Emulation
            4. 3.2.2.4.1.4 Running Code (Build 1)
          2. 3.2.2.4.2 INCR_BUILD 2: Closed Current Loop
            1. 3.2.2.4.2.1 Running Code (Build 2)
            2. 3.2.2.4.2.2 Building and Loading the Project and Setting Up Debug
          3. 3.2.2.4.3 INCR_BUILD 3: Closed Voltage and Current Loop
            1. 3.2.2.4.3.1 Building and Loading the Project and Setting Up Debug
            2. 3.2.2.4.3.2 Running Code (Build 3)
          4. 3.2.2.4.4 INCR_BUILD 4: Closed Balance, Voltage, and Current Loop
            1. 3.2.2.4.4.1 Building and Loading the Project and Setting Up Debug
            2. 3.2.2.4.4.2 Running Code (Build 4)
    3. 3.3 Test Results
      1. 3.3.1  IGBT Gate Rising and Falling Time
      2. 3.3.2  Power On Sequence
      3. 3.3.3  PFC Started by GUI
      4. 3.3.4  Zero Crossing Under 380VAC, 9kW
      5. 3.3.5  Current Ripple Under 380VAC,10kW
      6. 3.3.6  10kW Load Test With Grid Power
      7. 3.3.7  9kW Load Test With AC Power Source
      8. 3.3.8  Power Analyzer Results
      9. 3.3.9  Thermal Performance
      10. 3.3.10 Voltage Short Interrupt Test
      11. 3.3.11 Efficiency, iTHD, and Power Factor Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Material (BOM)
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

ISOTMP35

The TI ISOTMP35 is the first isolated temperature sensor IC in the industry, combining an integrated isolation barrier, up to 3000VRMS withstand voltage, with an analog temperature sensor featuring a 10mV/°C slope from –40°C to 150°C. This integration enables the sensor to be colocated with high-voltage heat sources (for example: HV FETs, IGBTs, or HV contactors) without requiring expensive isolation circuitry. The direct contact with the high-voltage heat source also provides greater accuracy and faster thermal response compared with approaches where the sensor is placed further away to meet isolation requirements. Operating from a non-isolated 2.3V to 5.5V supply, the ISOTMP35 allows easy integration into applications where sub-regulated power is not available on the high-voltage plane. The integrated isolation barrier satisfies UL 1577 requirements. The surface mount package (7-pin SOIC) provides excellent heat flow from the heat source to the embedded thermal sensor, minimizing thermal mass and providing more accurate heat-source measurement. This reduces the need for time-consuming thermal modeling and improves system design margin by reducing mechanical variations due to manufacturing and assembly. The ISOTMP35 class-AB output driver provides a strong 500μA maximum output to drive capacitive loads up to 1000pF and is designed to directly interface with analog-to-digital converter (ADC) sample and hold inputs.