TIDUFB1 December   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Control System Design Theory
        1. 2.2.1.1 PWM Modulation
        2. 2.2.1.2 Current Loop Model
        3. 2.2.1.3 DC Bus Regulation Loop
        4. 2.2.1.4 DC Voltage Balance Controller
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F280013x
      2. 2.3.2 UCC5350
      3. 2.3.3 AMC1350
      4. 2.3.4 TMCS1123
      5. 2.3.5 UCC28750
      6. 2.3.6 LM25180
      7. 2.3.7 ISOTMP35
      8. 2.3.8 TLV76133
      9. 2.3.9 TLV9062
    4. 2.4 Hardware Design
      1. 2.4.1  Inductor Design
      2. 2.4.2  Bus Capacitor Selection
      3. 2.4.3  Input AC Voltage Sensing
      4. 2.4.4  Output DCBUS Voltage Sensing
      5. 2.4.5  Auxiliary Power Supply
      6. 2.4.6  Isolated Power Supply
      7. 2.4.7  Inductor Current Sensing
      8. 2.4.8  Gate Driver
      9. 2.4.9  Isolated Temperature Sensing
      10. 2.4.10 Overcurrent, Overvoltage Protection (CMPSS)
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Getting Started Hardware
        1. 3.1.1.1 Board Overview
        2. 3.1.1.2 Test Equipment
    2. 3.2 Software Requirements
      1. 3.2.1 Getting Started GUI
        1. 3.2.1.1 Test Setup
        2. 3.2.1.2 Overview of a GUI Software
        3. 3.2.1.3 Procedures of Test With GUI
      2. 3.2.2 Getting Started Firmware
        1. 3.2.2.1 Opening the Project Inside Code Composer Studio™
        2. 3.2.2.2 Project Structure
        3. 3.2.2.3 Test Setup
        4. 3.2.2.4 Running Project
          1. 3.2.2.4.1 INCR_BUILD 1: Open Loop
            1. 3.2.2.4.1.1 Setting, Building, and Loading the Project
            2. 3.2.2.4.1.2 Setup Debug Environment Windows
            3. 3.2.2.4.1.3 Using Real-Time Emulation
            4. 3.2.2.4.1.4 Running Code (Build 1)
          2. 3.2.2.4.2 INCR_BUILD 2: Closed Current Loop
            1. 3.2.2.4.2.1 Running Code (Build 2)
            2. 3.2.2.4.2.2 Building and Loading the Project and Setting Up Debug
          3. 3.2.2.4.3 INCR_BUILD 3: Closed Voltage and Current Loop
            1. 3.2.2.4.3.1 Building and Loading the Project and Setting Up Debug
            2. 3.2.2.4.3.2 Running Code (Build 3)
          4. 3.2.2.4.4 INCR_BUILD 4: Closed Balance, Voltage, and Current Loop
            1. 3.2.2.4.4.1 Building and Loading the Project and Setting Up Debug
            2. 3.2.2.4.4.2 Running Code (Build 4)
    3. 3.3 Test Results
      1. 3.3.1  IGBT Gate Rising and Falling Time
      2. 3.3.2  Power On Sequence
      3. 3.3.3  PFC Started by GUI
      4. 3.3.4  Zero Crossing Under 380VAC, 9kW
      5. 3.3.5  Current Ripple Under 380VAC,10kW
      6. 3.3.6  10kW Load Test With Grid Power
      7. 3.3.7  9kW Load Test With AC Power Source
      8. 3.3.8  Power Analyzer Results
      9. 3.3.9  Thermal Performance
      10. 3.3.10 Voltage Short Interrupt Test
      11. 3.3.11 Efficiency, iTHD, and Power Factor Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Material (BOM)
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

Procedures of Test With GUI

Use the following steps to test the reference design with the GUI:

  1. Connect the USB to UART adapter from the laptop to J9.
  2. Connect the AC source(208AC to 400VACL-L) to J1, J2, and J3. J5 and J7 can be connected or can be left disconnected.
  3. Connect the DC load to J4 and J8, set to no load.
  4. Run the GUI software, choose the correct UART port and set the baud rate at 115200bps.
  5. Power on the board, wait for the D25 LED to blink.
  6. Wait for relays to close.
  7. Check the GUI, the DC output voltage is about 530VDC at 380VAC input, since the PFC does not start.
  8. Send the 0x11 command to start the PFC, until the DC output voltage is about 680VDC under no load.
  9. Increase the load step by step, until the DC output voltage is about 650VDC (when the load is > 500W). Check the AC input current, DC output voltage, and temperature during loading. Figure 3-4 shows the waveforms under 380VAC, 650VDC, 9kW.
    TIDA-010257 Waveforms 380VAC,
                            650VDC, 9kW
    Note:
    • CH1 (Blue): DCBUS output voltage
    • CH2 (Light blue): AC input phase A voltage
    • CH4 (Green): AC Input phase A current
    Figure 3-4 Waveforms 380VAC, 650VDC, 9kW
  10. Unload the board step by step until there is no load.
  11. Send the 0x22 command to stop the PFC.
  12. To bring the system to a safe stop, bring the input AC voltage down to zero.
CAUTION: This reference design has electrolytic capacitors. The discharge rate of the capacitors is very slow without an external load. Always pay attention to the DCBUS voltage.A load on the DCBUS can speed up discharge; otherwise, wait a long time for the DCBUS to get to zero.